综合智慧能源

• •    

基于NSMFO-BERT算法的电力系统多目标优化经济调度研究

曾浩政, 殷林飞   

  1. 广西大学, 广西壮族自治区 530004 中国
  • 收稿日期:2024-12-02 修回日期:2025-02-08
  • 基金资助:
    国家自然科学基金(62463001)

Research on multi-objective optimal economic dispatch of power system based on NSMFO-BERT algorithm

  1. , 530004, China
  • Received:2024-12-02 Revised:2025-02-08
  • Supported by:
    National Natural Science Foundation of China(62463001)

摘要: 随着大量可再生能源并网,传统电力系统模型已难以满足现代电力系统的复杂需求。为适应多种能源类型协同发电的趋势,本研究构建了一种以火力发电为主、可再生能源为辅的新型电力系统模型,整合了风能、太阳能、核能、抽水蓄能、生物质能和潮汐能等多种可再生能源。由于新型能源系统的发电成本和碳排放量目标面临着多目标权衡的挑战,需要一种智能的优化方法来动态调整各发电单元的输出,充分利用各类能源的优势。因此,本研究提出了一种基于非支配飞蛾扑火优化算法-双向编码器表示转换器的优化算法。双向编码器表示转换器作为一种大模型,擅长处理复杂的数据关系,通过学习非支配飞蛾扑火优化算法的输出发电机组有功功率负荷预测之间的关系,快速生成大量发电机组的调度策略。通过仿真结果表明,与非支配飞蛾扑火优化算法、多目标灰狼算法和多目标蚁狮算法相比:(1)所提出的算法能够找到更小的发电成本和碳排放量目标值的帕累托曲线;(2)所提的算法计算速度分别比对比算法快69.3%、61.4%和90.9%,计算效率最高。

关键词: 双向编码器表示转换器, 非支配飞蛾扑火优化算法, 大语言模型, 新型电力系统, 发电成本, 碳排放量

Abstract: As a massive number of renewable energies are connected to the grid, the traditional power system model has been incapable of meeting the complex demands of modern power systems. To adapt to the trend of synergistic power generation from multiple energy types, this study constructs a novel power system model with thermal power generation as the main source and renewable energy as a supplementary source, integrating multiple renewable energy sources such as wind, solar, nuclear, hydro, biomass, and tidal energy. Because of the challenge of multi-objective trade-offs between generator cost and carbon emission targets for novel power systems, an intelligent optimization method is needed to dynamically adjust the output of each generator to utilize the full benefits of each energy type. Therefore, this study proposes the non-dominated sorting moth-flame optimizer-bidirectional encoder representations from Transformers algorithm. Bidirectional encoder representations from Transformers (BERT), as a large language model, has excelled in handling complex data relationships. The BERT can quickly generate massive scheduling strategies by learning the relationship between the active power of output generators and load forecasts produced by the non-dominated sorting moth-flame optimization algorithm. The simulation results show that compared with the non-dominated sorting moth-flame optimizer, the multi-objective grey wolf algorithm, and the multi-objective ant lion algorithm: (1) the proposed algorithm can find smaller Pareto curves for the objective values of the generator cost and the carbon emissions; (2) the proposed algorithm achieves 69.3%, 61.4% and 90.9% faster computation speed than the comparison algorithms, respectively, and has the highest computational efficiency.

Key words: bidirectional encoder representations from Transformers, non-dominated sorting moth-flame optimizer, large language model, novel power system, generator costs, carbon emissions