综合智慧能源

• •    

基于多重卷积组合大模型的光伏出力预测

殷林飞, 张依玲   

  1. 广西大学, 广西壮族自治区 530004 中国
  • 收稿日期:2024-12-24 修回日期:2025-01-12
  • 基金资助:
    国家自然科学基金(62463001)

Multi convolutional combinatorial large model for prediction of photovoltaic output

  1. , 530004, China
  • Received:2024-12-24 Revised:2025-01-12
  • Supported by:
    National Natural Science Foundation of China(62463001)

摘要: 针对光伏出力预测准确率较低的问题,提出一种多重卷积组合大模型,即三重卷积神经网络、权重全连接回归网络和改进的双向编码器表征网络的组合预测模型(TCNNs-WFRN-IBERT)。三重卷积神经网络(TCNNs)采用多种尺寸的卷积核由浅入深高效挖掘光伏数据的特征信息;权重全连接回归网络(WFRN)利用粒子群优化算法(PSO)优化两个深度神经网络(DNNs)的预测输出的权重系数,提高预测精度;整合TCNNs和WFRN的预测结果并输入到改进的双向编码器表征网络(IBERT)改进的大模型中训练,利用IBERT的注意力机制实现可解释性的特征分析,从而确定最终的光伏出力预测值。将TCNNs-WFRN-IBERT用于预测巴西纳塔尔市提前1天每小时的光伏出力功率,用实际光伏出力和气象数据进行仿真试验并与38种算法作对比。试验结果表明,TCNNs-WFRN-IBERT模型的平均绝对误差、均方误差和均方根误差分别为22.61W,1818.20 W2和42.64W。经对比,TCNNs-WFRN-IBERT的各评价指标均低于其他对比模型,且MAE数值比其他38种对比模型至少小2.71%,验证了所提模型的有效性。

关键词: 三重卷积神经网络, 权重全连接回归网络, 改进的双向编码器表征网络, 光伏出力预测

Abstract: Aiming at the problem of low accuracy of PV output prediction, a multiple convolutional combination of large models is proposed, i.e., the combination prediction model of triple convolutional neural networks, weighted fully connected regres-sion networks and improved bidirectional encoder representations networks (TCNNs-WFRN-IBERT). The triple convolu-tional neural networks (TCNNs) use multiple sizes of convolutional kernels to efficiently mine the feature information of PV data from shallow to deep; the weighted fully-connected regression network (WFRN) optimizes the weight coefficients of the prediction outputs of the two deep neural networks (DNNs) using the particle swarm optimization (PSO) to improve the prediction accuracy; and integrates the prediction results of the TCNNs and the WFRN and inputs them into the im-proved Bidirectional Encoder Representation Network (IBERT) improved large model for training, and utilizing the atten-tion mechanism of IBERT to achieve interpretable feature analysis to determine the final PV output prediction value. TCNNs-WFRN-IBERT was used to predict the hourly PV output power for 1 day ahead in the city of Natal, Brazil, and simulation experiments were performed and compared with 38 algorithms using actual PV output and meteorological data. The results show that the average absolute error, mean square error and root mean square error of the TCNNs-WFRN-IBERT model are 22.61 W, 1818.20 W2 and 42.64 W. The evaluation indexes of TCNNs-WFRN-IBERT are lower than those of the other comparative models and the value of the MAE is at least 2.71% smaller than that of the other 38 comparative models, which validates the effectiveness of the proposed model. , verifying the validity of the pro-posed model.

Key words: triple convolutional neural network, weighted fully connected regression network, improved bidirectional encoder repre-sentations from transformers, photovoltaic output forecasting.