[1] |
童家麟, 洪庆, 吕洪坤, 等. 电源侧储能技术发展现状及应用前景综述[J]. 华电技术, 2021, 43(7):17-23.
doi: 10.3969/j.issn.1674-1951.2021.07.003
|
|
TONG Jialin, HONG Qing, LYU Hongkun, et al. Development status and application prospect of power side energy storage technology[J]. Huadian Technology, 2021, 43(7):17-23.
|
[2] |
位帅洁, 李帅辉, 赵志鹏, 等. 花状二硫化锡的储钠性能研究[J]. 华电技术, 2021, 43(7):37-41.
doi: 10.3969/j.issn.1674-1951.2021.07.006
|
|
WEI Shuaijie, LI Shuaihui, ZHAO Zhipeng, et al. Sodium storage performance of flower-like SnS2[J]. Huadian Technology, 2021, 43(7):37-41.
|
[3] |
吕佳歆, 张翠萍. 锂离子电池在电动车上的应用前景[J]. 化工时刊, 2019, 33(3):38-44.
|
|
LYU Jiaxin, ZHANG Cuiping. Application perspective of lithium-ion battery on electrical vehicles[J]. Chemical Industry Times, 2019, 33(3):38-44.
|
[4] |
郝跃辉, 成怀刚, 钱阿妞. 异质结构碳材料的金属空气电池应用研究进展[J]. 无机盐工业, 2021, 53(6):23-30.
|
|
HAO Yuehui, CHENG Huaigang, QIAN Aniu. Research progress of hetero-structured carbon materials for metal-O2 batteries applications[J]. Inorganic Chemicals Industry, 2021, 56(6):23-30.
|
[5] |
乔雪, 杨雪彪, 黄婷婷, 等. 纳米锗-锡/碳复合材料的合成与电化学性能研究[J]. 华电技术, 2021, 43(7):24-29.
doi: 10.3969/j.issn.1674-1951.2021.07.004
|
|
QIAO Xue, YANG Xuebiao, HUANG Tingting, et al. Synjournal and electrochemical performance of nano-Ge-Sn/C composite material[J]. Huadian Technology, 2021, 43(7):24-29.
|
[6] |
DA Y X, ZHAO F X, SHI J C, et al. Effects of ultrafine bismuth powder on the properties of zinc electrodes in Zinc-air batteries[J]. Journal of Electronic Materials, 2020, 49(4):2479-2490.
doi: 10.1007/s11664-020-07978-2
|
[7] |
GUO D H, SHIBUYA R, CHISATO A, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271):361-365.
doi: 10.1126/science.aad0832
|
[8] |
WU M G, WANG Y Q, Wei Z G, et al. Ternary doped porous carbon nanofifibers with excellent ORR and OER performance for zinc-air batteries[J]. Journal of Materials Chemistry, 2018, 23(6):10918-10925.
|
[9] |
CHEN G D, XU Y Y, HUANG L, et al. Continuous nitrogen-doped carbon nanotube matrix for boosting oxygen electrocatalysis in rechargeable Zn-air batteries[J]. Journal of Energy Chemistry, 2021, 55(4):183-189.
doi: 10.1016/j.jechem.2020.07.012
|
[10] |
MENG Z H, CHEN N, CAI S C, et al. Rational design of hierarchically,porous,Fe-N-doped carbon as efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries[J]. Nano Research, 2021, 14(2):4768-4775.
doi: 10.1007/s12274-021-3422-z
|
[11] |
LIU B, SHIOYAMA H, AKITA T, et al. Metal-organic framework as a template for porous carbon synjournal[J]. Journal of the American Chemical Society, 2008, 130(6):5390-5391.
doi: 10.1021/ja7106146
|
[12] |
CHEN B L, YANG Z X, ZHU Y Q. Zeolitic imidazolate framework materials:Recent progress in synjournal and applications[J]. Journal of Materials Chemistry, 2014, 2(40):16811-16831.
|
[13] |
NIU Q J, CHEN B L, GUO J X, et al. Flexible,porous,and metal-heteroatomdoped carbon nanofbers as efcient ORR electrocatalysts for Zn-Air battery[J]. Nano-Micro Letters, 2019, 11(1):1-17.
doi: 10.1007/s40820-018-0235-z
|
[14] |
CAI P W, PENG X X, HAUNG J H, et al. Covalent organic frameworks derived hollow structured N-doped noble carbon for asymmetric-electrolyte Zn-air battery[J]. Science China Chemistry, 2019, 62(3):385-392.
doi: 10.1007/s11426-018-9395-1
|
[15] |
WANG J, WU H H, GAO D F, et al. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for Zinc-air battery[J]. Nano Energy, 2015, 13(4):387-396.
doi: 10.1016/j.nanoen.2015.02.025
|
[16] |
ZOU S B, LI J J, WU X Q, et al. Electrospun N-doped carbon nanofibers decorated with Fe3C nanoparticles as highly active oxygen reduction electrocatalysts for rechargeable Zn-air batteries[J]. Chemical Physics Letters, 2021, 778:138769.
doi: 10.1016/j.cplett.2021.138769
|
[17] |
WU M C, GUO B K, NIE A M, et al. Tailored architectures of FeNi alloy embedded in N-doped carbon as bifunctional oxygen electrocatalyst for rechargeable Zinc-air battery[J]. Journal of Colloid and Interface Science, 2020, 561(3):585-592.
doi: 10.1016/j.jcis.2019.11.033
|
[18] |
GUAN C, SUMBOJA A, ZANG W J, et al. Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries[J]. Energy Storage Materials, 2019, 16(1):243-250.
doi: 10.1016/j.ensm.2018.06.001
|
[19] |
BUSCH M, HALCK N B, KRAMM U I, et al. Beyond the top of the volcano?——A unified approach to electrocatalytic oxygen reduction and oxygen evolution[J]. Nano Energy, 2016, 29(11):126-135.
doi: 10.1016/j.nanoen.2016.04.011
|
[20] |
SU H Y, GORLIN Y, MAN I G. Identifying active surface phases for metal oxide electrocatalysts:A study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis[J]. Physical Chemistry Chemical Physics, 2012, 14(40):14010-14022.
doi: 10.1039/c2cp40841d
|
[21] |
YAN L, XU Z Y, HU W K, et al. Formation of sandwiched leaf-like CNTs-Co/ZnCo2O4@NC-CNTs nanohybrids for high-power-density rechargeable Zn-air batteries[J]. Nano Energy: 2021, 82(1):105710.
doi: 10.1016/j.nanoen.2020.105710
|
[22] |
SUMBOJA A, LUBKE M, WANG Y, et al. All-solid-state,foldable,and rechargeable Zn-Air batteries based on manganese oxide grown on graphene-coated carbon cloth air cathode[J]. Advanced Energy Materials: 2017, 7(20):1700927.
doi: 10.1002/aenm.201700927
|