综合智慧能源 ›› 2023, Vol. 45 ›› Issue (1): 31-40.doi: 10.3969/j.issn.2097-0706.2023.01.004

• 电力系统规划 • 上一篇    下一篇

基于BiLSTM网络与误差修正的超短期负荷预测

高明1(), 郝妍2()   

  1. 1.马鞍山当涂发电有限公司,安徽 马鞍山 243102
    2.河北工业大学 电气工程学院,天津 300132
  • 收稿日期:2022-10-20 修回日期:2023-01-10 出版日期:2023-01-25
  • 作者简介:高明(1980),男,高级工程师,从事火力发电厂生产运行管理及厂内风光火储多能互补推广应用等方面的研究,gaoming1980@126.com
    郝妍(1998),女,在读硕士研究生,从事光伏功率预测方面的研究,hy582483919@qq.com
  • 基金资助:
    河北省自然科学基金项目(E2020202142)

Ultra-short-term load forecasting based on BiLSTM network and error correction

GAO Ming1(), HAO Yan2()   

  1. 1. Ma'anshan Dangtu Power Generation Company Limited,Ma'anshan 243102,China
    2. School of Electrical Engineering,Hebei University of Technology,Tianjin 300132,China
  • Received:2022-10-20 Revised:2023-01-10 Published:2023-01-25
  • Supported by:
    Natural Science Foundation of Hebei Province(E2020202142)

摘要:

电力负荷预测对于电力系统电量供需平衡、经济运行具有重要意义,电力负荷具有随机性、波动性等不确定性特征且易受天气因素影响,负荷准确预测存在技术挑战。提出了一种基于双向长短期记忆(BiLSTM)神经网络与误差修正的超短期负荷预测模型,采用最大信息系数描述各影响因素与负荷的关系,并进一步对输入特征进行筛选;考虑负荷变量数值序列的时序性,利用BiLSTM网络建立负荷预测模型,针对预测结果误差,采用自适应噪声的完备集合经验模态分解(CEEMDAN)算法将误差结果序列分解为若干分量,每个误差分量分别再建立BiLSTM预测模型。以我国北方某地区配电网实际负荷数据为算例,采用不同神经网络模型进行对比测试,结果表明该模型具有更高的准确度。

关键词: 电力负荷, 超短期负荷预测, BiLSTM神经网络, CEEMDAN算法, 误差修正, 最大信息系数

Abstract:

Accurate power load forecasting is important to maintain the balance of power supply and demand and the economy and stability of power system. Since power load are random and volatile under the influence of meteorological factors,accurate forecasting on power load is a technical challenge. An ultra-short-term load forecasting model is built based on bi-directional long short-term memory (BiLSTM) neural network and error correction. Maximum information coefficient (MIC) is used to describe the nonlinear relationships between the various influencing factors and load data, so as to filter the input characteristics. Considering the time-series characteristics of the load sequence, the initial load forecasting model is established based on the BiLSTM network. To lessen the prediction error, complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)algorithm is used to decompose the error sequence into several error components, whose BiLSTM prediction models are built respectively to modify the initial predicted results. The simulation experiment on a power distribution network in Tianjin, a northern municipality in China, is carried out. The experimental results show that the prediction values made by the BiLSTM-based model is more accurate that made by the models based on other neural networks.

Key words: power load, ultra-short-term load forecasting, BiLSTM neural network, CEEMDAN, error correction, MIC

中图分类号: