[1] |
舒印彪, 赵勇, 赵良, 等. “双碳”目标下我国能源电力低碳转型路径[J/OL]. 中国电机工程学报:1-9[2022-10-12]. https://doi.org/10.13334/j.0258-8013.pcsee.221407.
doi: https://doi.org/10.13334/j.0258-8013.pcsee.221407
|
|
SHU Yinbiao, ZHAO Yong, ZHAO Liang, et al. Study on low carbon energy transition path toward carbon peakand carbon neutrality[J/OL]. Proceedings of the CSEE:1-9[2022-10-12]. https://doi.org/10.13334/j.0258-8013.pcsee.221407.
doi: https://doi.org/10.13334/j.0258-8013.pcsee.221407
|
[2] |
张照贝, 顾春华, 温蜜. 基于XGBoost和QRLSTM的超短期负荷预测方法[J]. 计算机仿真, 2022, 39(1):90-95,110.
|
|
ZHANG Zhaobei, GU Chunhua, WEN Mi, et al. Ultra-short-term load forecasting method based on XGBoost and QRLSTM[J]. Computer Simulation, 2022, 39(1):90-95,110.
|
[3] |
陈培垠, 方彦军. 基于卡尔曼滤波预测节假日逐点增长率的电力系统短期负荷预测[J]. 武汉大学学报(工学版), 2020, 53(2):139-144.
|
|
CHEN Peiyin, FANG Yanjun. Short-term load forecasting of power system for holiday point-by-point growth rate based on Kalman filtering[J]. Engineering Journal of Wuhan University, 2020, 53(2):139-144.
|
[4] |
邓带雨, 李坚, 张真源, 等. 基于EEMD-GRU-MLR的短期电力负荷预测[J]. 电网技术, 2020, 44(2):593-602.
|
|
DENG Daiyu, LI Jian, ZHANG Zhenyuan, et al. Short-term electric load forecasting based on EEMD-GRU-MLR[J]. Power System Technology, 2020, 44(2):593-602.
|
[5] |
方娜, 李俊晓, 陈浩, 等. 基于变分模态分解的卷积神经网络-双向门控循环单元-多元线性回归多频组合短期电力负荷预测[J]. 现代电力, 2022, 39(4):441-448.
|
|
FANG Na, LI Junxiao, CHEN Hao, et al. Multi-frequency combination short-term power load forecasting with convolutional neural networks-bidirectional gated recurrent unit-multiple linear regression based on variational mode decomposition[J]. Modern Electric Power, 2022, 39(4):441-448.
|
[6] |
甘景福, 晏坤, 马明晗, 等. 基于改进聚类算法的人工神经网络短期负荷预测研究[J]. 电工电能新技术, 2022, 41(9):40-46.
|
|
GAN Jingfu, YAN Kun, MA Minghan, et al. Research on short-term load forecasting based on modified clustering and artificial neural networks[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(9):40-46.
|
[7] |
姚程文, 杨苹, 刘泽健. 基于CNN-GRU混合神经网络的负荷预测方法[J]. 电网技术, 2020, 44(9):3416-3424.
|
|
YAO Chengwen, YANG Ping, LIU Zejian. Load forecasting method based on CNN-GRU hybrid neural network[J]. Power System Technology, 2020, 44(9):3416-3424.
|
[8] |
赵婧宇, 池越, 周亚同. 基于SSA-LSTM模型的短期电力负荷预测[J]. 电工电能新技术, 2022, 41(6):71-79.
|
|
ZHAO Jingyu, CHI Yue, ZHOU Yatong. Short-term load forecasting based on SSA-LSTM model[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(6):71-79.
|
[9] |
王继东, 杜冲. 基于Attention-BiLSTM神经网络和气象数据修正的短期负荷预测模型[J]. 电力自动化设备, 2022, 42(4):172-177,224.
|
|
WANG Jidong, DU Chong. Short-term load prediction model based on Attention-BiLSTM neural network and meteorological data correction[J]. Electric Power Automation Equipment, 2022, 42(4):172-177,224.
|
[10] |
李彬, 胡纯瑾, 王婧. 基于EEMD-BiLSTM的可调节负荷预测方法[J]. 综合智慧能源, 2022, 44(9):33-39.
doi: 10.3969/j.issn.2097-0706.2022.09.005
|
|
LI Bin, HU Chunjin, WANG Jing. Prediction method for adjustable load based on EEMD-BiLSTM[J]. Integrated Intelligent Energy, 2022, 44(9):33-39.
doi: 10.3969/j.issn.2097-0706.2022.09.005
|
[11] |
李玉志, 刘晓亮, 邢方方, 等. 基于Bi-LSTM和特征关联性分析的日尖峰负荷预测[J]. 电网技术, 2021, 45(7):2719-2730.
|
|
LI Yuzhi, LIU Xiaoliang, XING Fangfang, et al. Daily peak load prediction based on correlation analysis and bi-directional long short-term memory network[J]. Power System Technology, 2021, 45(7):2719-2730.
|
[12] |
任建吉, 位慧慧, 邹卓霖, 等. 基于CNN-BiLSTM-Attention的超短期电力负荷预测[J]. 电力系统保护与控制, 2022, 50(8):108-116.
|
|
REN Jianji, WEI Huihui, ZOU Zhuolin, et al. Ultra-short-term power load forecasting based on CNN-BiLSTM-Attention[J]. Power System Protection and Control, 2022, 50(8):108-116.
|
[13] |
孙辉, 杨帆, 高正男, 等. 考虑特征重要性值波动的MI-BILSTM短期负荷预测[J]. 电力系统自动化, 2022, 46(8):95-103.
|
|
SUN Hui, YANG Fan, GAO Zhengnan, et al. Short-term load forecasting based on mutual information and bi-directional long short-term memory network considering fluctuation in importance values of features[J]. Automation of Electric Power Systems, 2022, 46(8):95-103.
|
[14] |
JAVED U, IJAZ K, JAWAD M, et al. A novel short receptive field based dilated causal convolutional network integrated with bidirectional LSTM for short-term load forecasting[J]. Expert Systems with Applications, 2022, 205:117689.
doi: 10.1016/j.eswa.2022.117689
|
[15] |
ZHANG C, HUA L, JI C, et al. An evolutionary robust solar radiation prediction model based on WT-CEEMDAN and IASO-optimized outlier robust extreme learning machine[J]. Applied Energy, 2022, 322(9):119518.
doi: 10.1016/j.apenergy.2022.119518
|
[16] |
WANG J, LUO Y, TANG L, et al. A new weighted CEEMDAN-based prediction model: An experimental investigation of decomposition and non-decomposition approaches[J]. Knowledge-Based Systems, 2018, 160(11):188-199.
doi: 10.1016/j.knosys.2018.06.033
|
[17] |
肖小刚, 莫莉, 张祥, 等. 基于CEEMDAN+RF+AdaBoost的短期负荷预测[J]. 水电能源科学, 2020, 38(4):181-184,175.
|
|
XIAO Xiaogang, MO Li, ZHANG Xiang, et al. Short-term load forecasting based on CEEMDAN+RF+AdaBoost[J]. Water Resources and Power, 2020, 38(4):181-184,175.
|
[18] |
乔石, 王磊, 张鹏超, 等. 基于模态分解及注意力机制长短时间网络的短期负荷预测[J/OL]. 电网技术:1-13[2022-10-12]. https://doi.org/10.13335/j.1000-3673.pst.2022.0368.
doi: https://doi.org/10.13335/j.1000-3673.pst.2022.0368
|
|
QIAO Shi, WANG Lei, ZHANG Pengchao, et al. Short-term load forecasting by long and short-term temporal networks with attention based on modal decomposition[J/OL]. Power System Technology:1-13[2022-10-12]. https://doi.org/10.13335/j.1000-3673.pst.2022.0368.
doi: https://doi.org/10.13335/j.1000-3673.pst.2022.0368
|
[19] |
HU H, XIA X, LUO Y, et al. Development and application of an evolutionary deep learning framework of LSTM based on improved grasshopper optimization algorithm for short-term load forecasting[J]. Journal of Building Engineering, 2022, 57:104975.
doi: 10.1016/j.jobe.2022.104975
|
[20] |
葛磊蛟, 刘航旭, 赵康, 等. 面向商业和居民混合的配电网短期负荷预测HGWOACOA-LSTMN方法[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(12):1269-1279.
|
|
GE Leijiao, LIU Hangxu, ZHAO Kang, et al. An HGWOACOA-LSTMN method for short-term load forecasting of distribution network for commercial and residential users[J]. Journal of Tianjin University(Science and Technology), 2021, 54(12):1269-1279.
|