综合智慧能源 ›› 2023, Vol. 45 ›› Issue (7): 78-86.doi: 10.3969/j.issn.2097-0706.2023.07.009

• 优化运行与控制 • 上一篇    下一篇

基于RSOC的风光氢能源系统功率分配策略研究

李菁1(), 窦真兰2,*(), 王加祥1(), 张春雁2(), 鲁涛1(), 倪耀兵1()   

  1. 1.国网上海长兴供电公司,上海 201913
    2.国网上海市电力公司,上海 200122
  • 收稿日期:2023-04-02 修回日期:2023-06-12 接受日期:2023-07-25 出版日期:2023-07-25
  • 通讯作者: *窦真兰(1980),女,高级工程师,博士,从事综合能源系统、能源互联网、风力发电、氢能、储能、微网方面的工作,douzhl@126.com
  • 作者简介:李菁(1989),女,工程师,硕士,从事新能源发电方面的工作,1292203978@qq.com
    王加祥(1991),男,工程师,硕士,从事电气工程及其自动化方面的工作,13381878176@189.cn
    张春雁(1967),男,高级工程师,硕士,从事综合能源系统、能源互联网、电制氢及综合利用技术方面的工作,zhcytongji@126.com
    鲁涛(1991),男,工程师,从事电气工程及其自动化方面的工作,724907481@qq.com
    倪耀兵(1986),男,工程师,从事电气工程及其自动化方面的工作,407661478@qq.com
  • 基金资助:
    国家电网有限公司科技项目(5209KZ21N003)

Research on power distribution strategy of an RSOC-based wind-photovoltaic-hydrogen energy system

LI Jing1(), DOU Zhenlan2,*(), WANG Jiaxiang1(), ZHANG Chunyan2(), LU Tao1(), NI Yaobing1()   

  1. 1. State Grid Shanghai Changxing Power Supply Company, Shanghai 201913,China
    2. State Grid Shanghai Power Supply Company, Shanghai 200122, China
  • Received:2023-04-02 Revised:2023-06-12 Accepted:2023-07-25 Published:2023-07-25
  • Supported by:
    Science and Technology of SGCC(5209KZ21N003)

摘要:

可逆固体氧化物电池(RSOC)作为新型氢能储技术在可再生综合能源系统中具有广泛的应用前景。然而,与低温氢储能技术以堆功率代表系统功率进行功率分配策略研究相比,RSOC电堆外围需配置高功耗辅助系统(BOP)来维持其高温运行,且系统功率调控速率受温度安全限制。因此,RSOC氢电转化系统的BOP功耗和功率调控速率约束对系统功率分配有着显著的影响。为此,建立了基于RSOC的风光氢综合能源系统模型,着重开发了考虑BOP功耗的RSOC氢电转化系统功率模型。同时,提出一种基于RSOC的风光氢综合能源系统功率分配优化方法,考虑RSOC功率调控速率、各系统容量等约束条件,建立以系统日运行成本最小化、风光消纳最大化为目标的功率分配优化策略,并通过多目标粒子群优化算法求解该问题。优化结果显示,该算法能够获得优越的功率分配策略,与一般的功率分配策略相比,优化后的功率分配策略能够获得更高的系统收益。此外,电网和蓄电池的参与增加了系统的功率调节的灵活性,降低了系统整体运行功率。

关键词: 氢储能技术, 可逆固体氧化物电池, 可再生综合能源, 功率分配优化, 多目标粒子群优化

Abstract:

As a new hydrogen storage technology, a reversible solid oxide cell(RSOC)has a promising application prospects in renewable integrated energy systems. Low-temperature hydrogen storage technologies take stack power as system power in power allocation strategy making. A RSOC system is equipped with a large power consumption auxiliary system, Balance of Plant (BOP), to maintain its high-temperature operation, and the power control rate is limited by the safety temperature. Therefore, the power allocation strategy for the RSOC is decided by the power consumption of the BOP and power control rate of the RSOC hydrogen-water energy conversion system. The modelling of an RSOC-based wind-photovoltaic-hydrogen integrated energy system should make developing the power model for the RSOC hydrogen-water energy conversion system with BOP the priority. To optimize the power distribution in the RSOC-based wind-photovoltaic-hydrogen integrated energy system, a power distribution strategy considering the constraints of the RSOC power control rate and the capacities of subsystems is established, with the goals of minimizing the system daily operating cost and maximizing the consumption of the wind and photovoltaic power. The optimization is solved by multi-objective particle swarm optimization (MOPSO) algorithm. Compared with the general operation strategies, the optimization strategy proposed provides the system with more benefits. Moreover, the participation of the power grid and the storage battery increases the flexibility of the power regulation and reduces the overall operating power of the system.

Key words: hydrogen storage technology, reversible solid oxide cell, renewable integrated energy system, power distribution optimization, multi-objective particle swarm optimization

中图分类号: