[1] |
李敏霞, 侯焙然, 王派, 等. 二氧化碳跨临界循环热泵的应用与发展[J]. 综合智慧能源, 2023, 45(4): 12-18.
doi: 10.3969/j.issn.2097-0706.2023.04.002
|
|
LI Minxia, HOU Beiran, WANG Pai, et al. Application and development of CO2 transcritical cycle heat pumps[J]. Integrated Intelligent Energy, 2023, 45(4): 12-18.
doi: 10.3969/j.issn.2097-0706.2023.04.002
|
[2] |
习近平在第七十五届联合国大会一般性辩论上的讲话[EB/OL].(2020-09-22)[2024-03-17]. http://www.cppcc.gov.cn/zxww/2020/09/23/ARTI1600819264410115.shtml?from=groupmessage.
|
[3] |
Global CCS Institute. The global status of CCS: 2018[R]. Melbourne, Australia: Global CCS Institute, 2018.
|
[4] |
UNFCCC. Historic Paris agreement on climate change[EB/OL].(2015-12-13)[2024-06-17]. https://unfccc.int/news/finale-cop21.
|
[5] |
LIN Q Y, ZHANG X, WANG T, et al. Technical perspective of carbon capture, utilization, and storage[J]. Engineering, 2022, 14: 27-32.
|
[6] |
CUI Q R, ZHAO R, WANG T K, et al. A 150 000 t·a-1 post-combustion carbon capture and storage demonstration project for coal-fired power plants[J]. Engineering, 2022, 14: 22-26.
|
[7] |
温翯, 韩伟, 车春霞, 等. 燃烧后二氧化碳捕集技术与应用进展[J]. 精细化工, 2022, 39(8): 1584-1595.
|
|
WEN He, HAN Wei, CHE Chunxia, et al. Progress of post-combustion carbon dioxide capture technology development and applications[J]. Fine Chemicals, 2022, 39(8): 1584-1595.
|
[8] |
胡长征, 王雅博, 刘圣春. MEA溶液在生物质电厂和燃煤电厂捕集CO2中的应用对比[J]. 综合智慧能源, 2022, 44(6): 78-85.
doi: 10.3969/j.issn.2097-0706.2022.06.009
|
|
HU Changzheng, WANG Yabo, LIU Shengchun. Application of MEA solution in the CO2 capture in biomass power plants and coal-fired power plants[J]. Integrated Intelligent Energy, 2022, 44(6): 78-85.
doi: 10.3969/j.issn.2097-0706.2022.06.009
|
[9] |
BUI M, GUNAWAN I, VERHEYEN V, et al. Flexible operation of CSIRO's post-combustion CO2 capture pilot plant at the AGL Loy Yang power station[J]. International Journal of Greenhouse Gas Control, 2016, 48: 188-203.
|
[10] |
MECHLERI E, LAWAL A, RAMOS A, et al. Process control strategies for flexible operation of post-combustion CO2capture plants[J]. International Journal of Greenhouse Gas Control, 2017, 57: 14-25.
|
[11] |
MANAF N A, COUSINS A, FERON P, et al. Dynamic modelling, identification and preliminary control analysis of an amine-based post-combustion CO2 capture pilot plant[J]. Journal of Cleaner Production, 2016, 113: 635-653.
|
[12] |
LAWAL A, WANG M, STEPHENSON P, et al. Dynamic modelling of CO2 absorption for post combustion capture in coal-fired power plants[J]. Fuel, 2009, 88(12): 2455-2462.
|
[13] |
SCHNEIDER R, KENIG E Y, GÓRAK A. Dynamic modelling of reactive absorption with the Maxwell-Stefan approach[J]. Chemical Engineering Research and Design, 1999, 77(7): 633-638.
|
[14] |
NOERES C, KENIG E Y, GÓRAK A. Modelling of reactive separation processes: reactive absorption and reactive distillation[J]. Chemical Engineering and Processing:Process Intensification, 2003, 42(3):157-178.
|
[15] |
SULTAN T, ZABIRI H, SHAHBAZ M, et al. Model analysis for the implementation of a fast model predictive control scheme on the absorption/stripping CO2 capture plants[J]. ACS Omega, 2022, 7: 8437-8455.
|
[16] |
ZHANG W Z, MA C B, LI H F, et al. DMC-PID cascade control for MEA-based post-combustion CO2 capture process[J]. Chemical Engineering Research and Design, 2022, 182: 701-713.
|
[17] |
MORES P, SCENNA N, MUSSATI S. Post-combustion CO2 capture process: Equilibrium stage mathematical model of the chemical absorption of CO2 into monoethanolamine (MEA) aqueous solution[J]. Chemical Engineering Research and Design, 2011, 89(9):1587-1599.
|
[18] |
KENIG E Y, SCHNEIDER R, GORAK A. Rigorous dynamic modelling of complex reactive absorption processes[J]. Chemical Engineering Science, 1999, 54: 5195-5203.
|
[19] |
LAWAL A, WANG M, STEPHENSON P, et al. Dynamic modelling and analysis of post-combustion CO2 chemical absorption process for coal-fired power plants[J]. Fuel, 2010, 89: 2791-2801.
|
[20] |
WU X, WANG M L, LIAO P Z, et al. Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation[J]. Applied Energy, 2020, 257(1): 113941.
|
[21] |
ROBINSON P J, LUYBEN W L. Integrated gasification combined cycle dynamic model: H2S absorption/stripping, water-gas shift reactors, and CO2 absorption/stripping[J]. Industrial & Engineering Chemistry Research, 2010, 49: 4766-4781.
|
[22] |
NITTAYA T, DOUGLAS P L, CROISET E, et al. Dynamic modelling and evaluation of an industrial-scale CO2 capture plant using monoethanolamine absorption processes[J]. Industrial & Engineering Chemistry Research, 2014, 53: 11411-11426.
|
[23] |
MEJDELL T, KVAMSDAL H M, HAUGER S O, et al. Demonstration of non-linear model predictive control for optimal flexible operation of a CO2 capture plant[J]. International Journal of Greenhouse Gas Control, 2022, 117: 103645.
|
[24] |
LIAO P Z, LI Y G, WU X, et al. Flexible operation of large-scale coal-fired power plant integrated with solvent-based post-combustion CO2 capture based on neural network inverse control[J]. International Journal of Greenhouse Gas Control, 2020, 95: 102985.
|
[25] |
WU X, SHEN J, WANG M L, et al. Intelligent predictive control of large-scale solvent-based CO2 capture plant using artificial neural network and particle swarm optimization[J]. Energy, 2020, 196: 117070.
|
[26] |
ZHANG W Z, MA C B, LI H F, et al. DMC-PID cascade control for MEA-based post-combustion CO2 capture process[J]. Chemical Engineering Research and Design, 2022, 182: 701-713.
|
[27] |
唐炜洁, 沈炯, 吴啸, 等. 化学吸附燃烧后CO2捕集系统前馈优化控制[J]. 工程热物理学报, 2019, 40(9): 1969-1975.
|
|
TANG Weijie, SHEN Jiong, WU Xiao, et al. Feedforward optimization control of post-combustion CO2 capture system[J]. Journal of Engineering Thermophysics, 2019, 40(9): 1969-1975.
|
[28] |
侯忠生, 金尚泰. 无模型自适应控制——理论与应用[M]. 北京: 科学出版社, 2013.
|
[29] |
IPCC. Intergovernmental panel on climate change (IPCC) special report on carbon dioxide capture and storage[R]. Cambridge, UK: Cambridge University Press, 2005.
|
[30] |
李伟斌, 陈健. 乙醇胺溶液吸收 CO2动力学实验研究[J]. 中国科技论文在线, 2009., 4(12):849-854.
|
|
LI Weibin, CHEN Jian. Kinetics of absorption of CO2 into aqueous MEA solutions[J]. Sciencepaper Online, 2009, 4(12):849-854.
|
[31] |
李朋真, 贾冰珂, 刘艳红, 等. 燃烧后二氧化碳捕集系统的改进自抗扰控制[J]. 综合智慧能源, 2023, 45(8):18-25.
doi: 10.3969/j.issn.2097-0706.2023.08.003
|
|
LI Pengzhen, JIA Bingke, LIU Yanhong, et al. Modified active disturbance rejection control on the post-combustion CO2 capture system[J]. Integrated Intelligent Energy, 2023, 45(8): 18-25.
doi: 10.3969/j.issn.2097-0706.2023.08.003
|
[32] |
HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906.
|
[33] |
GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]// Proceedings of the 2003 American Control Conference, Denver, 2003: 4989-4996.
|
[34] |
HOU Z S, JIN S T. A novel data-driven control approach for a class of discrete-time nonlinear systems[J]. IEEE Transactions on Control Systems Technology, 2011, 19(6): 1549-1558.
|
[35] |
李朋真, 刘艳红, 吴振龙. 高比例可再生能源的多区域电力系统负荷频率自抗扰控制[J]. 综合智慧能源, 2022, 44(10): 33-41.
doi: 10.3969/j.issn.2097-0706.2022.10.005
|
|
LI Pengzhen, LIU Yanhong, WU Zhenlong. Active disturbance rejection control on load frequency of multi-area power systems with high-proportion renewable energy[J]. Integrated Intelligent Energy, 2022, 44(10): 33-41.
doi: 10.3969/j.issn.2097-0706.2022.10.005
|