[1] |
KORHAN Ö, BURAK K. Thermo-economic assessment of a thermally integrated pumped thermal energy storage (TI-PTES) system combined with an absorption refrigeration cycle driven by low-grade heat source[J]. Journal of Energy Storage, 2022, 51:104486.
doi: 10.1016/j.est.2022.104486
|
[2] |
GAO J, XU Z. Performance evaluation of absorption thermal energy storage/transmission using ionic liquid absorbents[J]. Energy and Built Environment, 2022, 26,(19):259-269.
|
[3] |
孙健, 秦宇, 王寅武, 等. 基于热网驱动的综合能源新型空气源高温热水机组性能研究[J]. 综合智慧能源, 2022, 44(7):33-39.
doi: 10.3969/j.issn.2097-0706.2022.07.004
|
|
SUN Jian, QIN Yu, WANG Yinwu, et al. Study on the performance of new air-source high-temperature hot water units driven by heat[J]. Integrated Intelligent Energy, 2022, 44(07):33-39.
|
[4] |
徐恒志, 周博文, 李广地, 等. 含水源热泵的区域综合能源系统低碳运行优化研究[J]. 综合智慧能源, 2022, 44(1):39-48.
doi: 10.3969/j.issn.2097-0706.2022.01.006
|
|
XU Hengzhi, ZHOU Bowen, LI Guangdi, et al. Research on optimal operation of the regional integrated energy system with water-source heat pumps[J]. Integrated Intelligent Energy, 2022, 44(1):39-48.
doi: 10.3969/j.issn.2097-0706.2022.01.006
|
[5] |
MEHARI A, XU Z, WANG R. Thermal energy storage using absorption cycle and system: A comprehensive review[J]. Energy Conversion and Management, 2020, 206:112482.
doi: 10.1016/j.enconman.2020.112482
|
[6] |
LIAN J, ZHANG Y, MA C, et al. A review on recent sizing methodologies of hybrid renewable energy systems[J]. Energy Conversion and Management, 2019, 199:112027.
doi: 10.1016/j.enconman.2019.112027
|
[7] |
MUGNIER D, GOETZ V. Energy storage comparison of sorption systems for cooling refrigeration[J]. Solar Energy, 2001, 71(1):47-55.
doi: 10.1016/S0038-092X(01)00013-5
|
[8] |
RIZZA J J. Ammonia-water low-temperature thermal storage system[J]. Journal of Solar Energy Engineering-Transactions of the ASME, 1998, 120: 25-31.
doi: 10.1115/1.2888042
|
[9] |
DIRKEN J. Thermal storage by means of an absorption cycle[D]. Delft: Delft University of Technology, 1987.
|
[10] |
RUITER J. Storage of thermal energy by means of an absorption cycle[D]. Delft: Delft University of Technology, 1987.
|
[11] |
徐士鸣, 张莉. 采用氨水溶液的先进蓄能系统工作特性研究(1)——工作原理及过程动态模型[J]. 太阳能学报, 2007, 28(5): 457-463.
|
|
XU Shiming, ZHANG Li. Theoretical research on the working characteristics of an advanced energy storage system using NH3-H2O as working fluid, part(1)—Working principle description and modeling[J]. Acta Energiae Solaris Sinica, 2007, 28(5): 457-463.
|
[12] |
徐士鸣, 张莉. 采用氨水溶液的先进蓄能系统工作特性研究(2)—— 全量蓄能策略下工作过程模拟及分析[J]. 太阳能学报, 2007, 28(12):1380-1388.
|
|
XU Shiming, ZHANG Li. Theoretical research on the working characteristics of an advanced energy storage system using NH3-H2O as working fluid, part(2)— Simulation and analysis of working process under the full-storage strategy[J]. Acta Energiae Solaris Sinica, 2007, 28(12):1380-1388.
|
[13] |
XU Z Y, WANG R Z. Absorption seasonal thermal storage cycle with high energy storage density through multi-stage output[J]. Energy, 2019, 167:1086-1096.
doi: 10.1016/j.energy.2018.11.072
|
[14] |
XU Z, WANG R. A sorption thermal storage system with large concentration glide[J]. Energy, 2017, 141:380-388.
doi: 10.1016/j.energy.2017.09.088
|
[15] |
JIA T, DAI E, DAI Y. Thermodynamic analysis and optimization of a balanced-type single-stage NH3-H2O absorption-resorption heat pump cycle for residential heating application[J]. Energy, 2019, 171:120-134.
doi: 10.1016/j.energy.2019.01.002
|
[16] |
JIA T, CHU P, DOU P, et al. Working domains of a novel solar-assisted GAX-based two-stage absorption-resorption heat pump with multiple internal heat recovery for space heating[J]. Energy Conversion and Management, 2020, 220:113060.
doi: 10.1016/j.enconman.2020.113060
|