综合智慧能源 ›› 2024, Vol. 46 ›› Issue (9): 53-60.doi: 10.3969/j.issn.2097-0706.2024.09.007

• 源网协调 • 上一篇    下一篇

基于广义天气分类的ICEEMDAN-LSTM网络光伏发电功率短期预测

袁俊球1(), 王迪1(), 谢小锋1(), 张茜颖1, 曹尚2(), 曹飞2(), 张经炜2()   

  1. 1.常州金坛金能电力有限公司,江苏 常州 213200
    2.河海大学 机电工程学院,江苏 常州 213200
  • 收稿日期:2024-07-10 修回日期:2024-08-05 出版日期:2024-09-25
  • 作者简介:袁俊球(1971),男,高级工程师,从事综合能源管理工作,15895002896@139.com
    王迪(1988),男,高级工程师,从事新能源电力系统及其自动化工作,395812163@qq.com
    谢小锋(1980),男,工程师,从事电气工程及其自动化工作,jtxiexf@js.sgcc.com.cn
    张茜颖(1990),女,工程师,硕士,从事综合能源管理方面的研究;
    曹尚(1999),男,硕士生,从事光伏寿命预测、功率预测方面的研究,shang.c@hhu.edu.cn
    曹飞(1986),男,副教授,博士,从事可再生能源转化方面的研究,fcao@hhu.edu.cn
    张经炜(1989),男,副教授,博士,从事太阳能光伏发电技术研究,jwzhang@hhu.edu.cn
  • 基金资助:
    常州金坛金能电力有限公司项目(CZ823029216)

Study of short-term PV power prediction based on ICEEMDAN-LSTM networks under generalized weather classifications

YUAN Junqiu1(), WANG Di1(), XIE Xiaofeng1(), ZHANG Qianying1, CAO Shang2(), CAO Fei2(), ZHANG Jingwei2()   

  1. 1. Changzhou Jintan Jinneng Electric Power Company limited,Changzhou 213200,China
    2. College of Mechanical and Electrical Engineering,Hohai University,Changzhou 213200,China
  • Received:2024-07-10 Revised:2024-08-05 Published:2024-09-25
  • Supported by:
    Changzhou Jintan Jinneng Power Company Limited(CZ823029216)

摘要:

针对光伏发电功率受天气影响大、随机波动性强的问题,提出基于广义天气分类和改进自适应噪声完备集合经验模态分解(ICEEMDAN)长短期记忆(LSTM)网络的短期光伏发电功率预测方法。基于历史辐照度数据,采用 K-means++聚类算法对广义天气类型进行划分,将天气类型分为3类,再通过ICEEMDAN方法将光伏发电数据分解为若干不同频率的本征模态和残差分量,以降低原始发电数据的非平稳性;在不同天气类型下,建立了不同模态序列分量下的LSTM预测模型;使用训练好的LSTM模型对各分解的子序列模态特征分量进行多维预测,并将各层模态预测序列融合成最终的预测结果。试验结果表明,所构建的ICEEMDAN-LSTM混合模型相较于常规短期光伏发电功率预测模型,具有更高的预测精度。

关键词: 光伏系统, 功率预测, 广义天气分类, 自适应噪声完备集合经验模态分解, 长短期记忆网络

Abstract:

To alleviate the influence of varied weather and strong randomness on photovoltaic (PV) systems, a short-term PV power prediction method based on improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and long short-term memory (LSTM) networks under generalized weather classifications is proposed. Based on the historical irradiance data, different weather conditions are divided into three generalized types by K-means++ clustering algorithm. Then, the PV power data are decomposed into several intrinsic mode functions(IMFs) and residual components of different frequencies by ICEEMDAN, to reduce the non-stationarity of the original sequence. LSTM forecasting models of the modal sequence components under different weather types are established. The trained LSTM models are used to make multi-dimensional prediction on modal components of each decomposed subsequence. The final prediction result is obtained by fusing the results of modal prediction sequences on different layers. The experimental results show that, the PV power prediction of the proposed ICEEMDAN-LSTM hybrid model is more accurate than that of conventional short-term prediction models.

Key words: photovoltaic system, power prediction, generalized weather classification, improved complete ensemble empirical mode decomposition with adaptive noise, long short-term memory network

中图分类号: