[1] |
WEN H R, DU Y, CHEN X Y, et al. A regional solar forecasting approach using generative adversarial networks with solar irradiance maps[J]. Renew Energy, 2023, 216: 119043.
|
[2] |
李军徽, 张嘉辉, 李翠萍, 等. 参与调峰的储能系统配置方案及经济性分析[J]. 电工技术学报, 2021, 36(19): 4148-4160.
|
|
LI Junhui, ZHANG Jiahui, LI Cuiping, et al. Configuration scheme and economic analysis of energy storage system participating in grid peak shaving[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4148-4160.
|
[3] |
葛俊雄, 蔡国伟, 姜柳, 等. 基于天气变化自适应分型与匹配的分布式光伏短期功率预测方法[J]. 激光与光电子学进展, 2024, 61(15):1-12.
|
|
GE Junxiong, CAI Guowei, JIANG Liu, et al. A method for distributed PV short-term power prediction based onweather change adaptive fractal and matching[J]. Laser Optoelectronics Progress, 2024, 61(15):1-12.
|
[4] |
高寒旭, 袁祖晴, 张淑婷, 等. 基于LSTM模型的短期光伏功率预测[J]. 太阳能学报, 2024, 45(6): 376-381.
|
|
GAO Hanxu, YUAN Zuqing, ZHANG Shuting, et al. Short-term photovoltaic power prediction based on LSTM model[J]. Acta Energiae Solaris Sinica, 2024, 45(6): 376-381.
|
[5] |
杨锡运, 马文兵, 彭琰, 等. 基于组合神经网络的分布式光伏超短期功率预测方法[J]. 热力发电, 2023, 52(8): 162-171.
|
|
YANG Xiyun, MA Wenbing, PENG Yan, et al. Distributed photovoltaic ultra-short-term power prediction method based on combined neural network[J]. Thermal Power Generation, 2023, 52 (8): 162-171.
|
[6] |
CHU Y H, URQUHART B, GOHARI S M I, et al. Short-term reforecasting of power output from a 48 MWe solar PV plant[J]. Solar Energy, 2015, 112: 68-77.
|
[7] |
BOUZERDOUM M, MELLIT A, MASSI PAVAN A. A hybrid model(SARIMA-SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant[J]. Solar Energy, 2013, 98: 226-235.
|
[8] |
LI F Y, ZHENG H F, LI X M, et al. Day-ahead city natural gas load forecasting based on decomposition-fusion technique and diversified ensemble learning model[J]. Applied Energy, 2021, 303: 117623.
|
[9] |
LI Z, YE L, ZHAO Y N, et al. A spatiotemporal directed graph convolution network for ultra-short-term wind power prediction[J]. IEEE Transactions on Sustainable Energy, 2023, 14(1): 39-54.
|
[10] |
FU W L, WANG K, TAN J W, et al. A composite framework coupling multiple feature selection, compound prediction models and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term wind speed forecasting[J]. Energy Convers Manage, 2020, 205: 112461.
|
[11] |
KAZEM H A, YOUSIF J H. Comparison of prediction methods of photovoltaic power system production using a measured dataset[J]. Energy Convers Manage, 2017, 148: 1070-1081.
|
[12] |
蔡源, 吴浩, 唐丹. 光伏发电功率预测方法综述[J]. 四川电力技术, 2024, 47(2): 25-31.
|
|
CAI Yuan, WU Hao, TANG Dan. Reviews of photovoltaic power prediction methods[J]. Sichuan Electric Power Technology, 2024, 47(2): 25-31.
|
[13] |
刘源延, 孔小兵, 马乐乐, 等. 基于小波包变换与深度学习的超短期光伏功率预测[J]. 太阳能学报, 2024, 45(5): 537-546.
|
|
LIU Yuanyan, KONG Xiaobing, MA Lele, et al. Ultra-short-term photovoltaic power forecasting based on wavelet packet transform and deep learning[J]. Acta Energiae Solaris Sinica, 2024, 45(5): 537-546.
|
[14] |
张永宁, 任晓颖, 张飞, 等. 基于深度学习的光伏功率预测技术[J/OL]. 综合智慧能源, (2024-04-01) [2024-07-23]. http://kns.cnki.net/kcms/detail/41.1461.TK.20240328.2244.002.html.
|
|
ZHANG Yongning, REN Xiaoying, ZHANG Fei, et al. Deep learning based photovoltaic power prediction technology[J/OL]. Integrated Intelligent Energy,(2024-04-01) [2024-07-23]. http://kns.cnki.net/kcms/detail/41.1461.TK.20240328.2244.002.html.
|
[15] |
郑真, 朱峰, 马小丽, 等. 基于TL-LSTM的新能源功率短期预测[J]. 综合智慧能源, 2023, 45(1): 41-48.
doi: 10.3969/j.issn.2097-0706.2023.01.005
|
|
ZHENG Zhen, ZHU Feng, MA Xiaoli, et al. Short-term new energy power prediction based on TL-LSTM[J]. Integrated Intelligent Energy, 2023, 45(1): 41-48.
doi: 10.3969/j.issn.2097-0706.2023.01.005
|
[16] |
李博涵. 基于相似时和LSTM神经网络的短期光伏功率预测[D]. 南宁: 广西大学, 2020.
|
|
LI Bohan. Short-term photovoltaic power prediction based on similar time and LSTM neural network[D]. Nanning: Guangxi University, 2020.
|
[17] |
王守相, 张娜. 基于灰色神经网络组合模型的光伏短期出力预测[J]. 电力系统自动化, 2012, 36(19): 37-41.
|
|
WANG Shouxiang, ZHANG Na. Short-term output power forecast of photovoltaic based on a grey and neural network hybrid model[J]. Automation of Electric Power Systems, 2012, 36(19): 37-41.
|
[18] |
朱玥, 顾洁, 孟璐. 基于EMD-LSTM的光伏发电预测模型[J]. 电力工程技术, 2020, 39(2): 51-58.
|
|
ZHU Yue, GU Jie, MENG Lu. Photovoltaic power generation prediction model based on EMD-LSTM[J]. Electric Power Engineering Technology, 2020, 39(2): 51-58.
|
[19] |
王鑫, 李慧, 叶林, 等. 考虑风速波动特性的VMD-GRU 短期风电功率预测[J]. 电力科学与技术学报, 2021, 36(4): 20-28.
|
|
WANG Xin, LI Hui, YE Lin, et al. VMD-GRU based short-term wind power forecast considering wind speed fluctuation characteristics[J]. Journal of Electric Power Science and Technology, 2021, 36(4): 20-28.
|
[20] |
ZHANG J L, TAN Z F, WEI Y M. An adaptive hybrid model for day-ahead photovoltaic output power prediction[J]. Journal of Cleaner Production, 2020, 244: 118858.
|
[21] |
金吉, 王斌, 喻敏, 等. 基于分形特征的自适应EEMD 及其在风功率预测中的应用[J]. 太阳能学报, 2023, 44(5): 416-424.
doi: 10.19912/j.0254-0096.tynxb.2022-0039
|
|
JIN Ji, WANG Bin, YU Min, et al. Adaptive eemd on basis of fraction characteristics and its application on wind power forecasting[J]. Acta Energiae Solaris Sinica, 2023, 44(5): 416-424.
doi: 10.19912/j.0254-0096.tynxb.2022-0039
|
[22] |
LI P T, ZHOU K K, LU X H, et al. A hybrid deep learning model for short-term PV power forecasting[J]. Applied Energy, 2020, 259: 114216.
|
[23] |
王晓东, 苗宜之, 刘颖明, 等. 基于多分解策略和误差校正的超短期风电功率混合智能预测算法[J]. 太阳能学报, 2021, 42(6): 312-320.
|
|
WANG Xiaodong, MIAO Yizhi, LIU Yingming, et al. Hybrid intelligent prediction algorithm of ultra-short-term wind power based on multi-decomposition strategy and error correction[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 312-320.
|
[24] |
GAO M M, LI J J, HONG F, et al. Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM[J]. Energy, 2019, 187: 115838.
|
[25] |
卢忠山, 袁建华. 基于EEMD-LSTM方法的光伏发电系统超短期功率预测[J]. 中国测试, 2022, 48(12): 125-132.
|
|
LU Zhongshan, YUAN Jianhua. Ultra-short term power prediction of photovoltaic power generation system based on EEMD-LSTM method[J]. China Measurement and Test, 2022, 48(12): 125-132.
|
[26] |
王飞, 米增强, 甄钊, 等. 基于天气状态模式识别的光伏电站发电功率分类预测方法[J]. 中国电机工程学报, 2013, 33(34): 75-82.
|
|
WANG Fei, MI Zengqiang, ZHEN Zhao, et al. A classified forecasting approach of power generation for photovoltaic plants based on weather condition pattern recognition[J]. Proceedings of the CSEE, 2013, 33(34): 75-82.
|
[27] |
孙辉, 冷建伟. 基于改进的Semi Boost天气聚类的CC-PSO-DBN短期光伏发电预测[J]. 计算机应用与软件, 2020, 37(8): 103-109.
|
|
SUN Hui, LENG Jianwei. CC-PSO-DBN short-term photovoltaic power generation forecasting based on improved Semi Boost weather clustering[J]. Computer Applications and Software, 2020, 37(8): 103-109.
|