[1] |
舒印彪, 赵勇, 赵良, 等. “双碳”目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43(5):1663-1672.
|
|
SHU Yinbiao, ZHAO Yong, ZHAO Liang, et al. Study on low carbon energy transition path toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2023, 43(5):1663-1672.
|
[2] |
国家能源局. 2024年上半年光伏发电建设情况[J]. 电力科技与环保, 2021, 31(4):46.
|
|
National Energy Administration. Photovoltaic power generation construction in the first half of 2024[J]. Electric Power Technology and Environmental Protection, 2021, 31(4):46.
|
[3] |
AKRAM M W, LI G, JIN Y, et al. Failures of photovoltaic modules and their detection:A review[J]. Applied Energy, 2022, 313:118822.
|
[4] |
KANDEAL A W, ELKADEEM M R, THAKUR A K, et al. Infrared thermography-based condition monitoring of solar photovoltaic systems:A mini review of recent advances[J]. Solar Energy, 2021, 223:33-43.
|
[5] |
ET-TALEBY A, CHAIBI Y, BOUSSETTA M, et al. A novel fault detection technique for PV systems based on the K-means algorithm,coded wireless orthogonal frequency division multiplexing and thermal image processing techniques[J]. Solar Energy, 2022, 237:365-376.
|
[6] |
ALI M U, KHAN H F, MASUD M, et al. A machine learning framework to identify the hotspot in photovoltaic module using infrared thermography[J]. Solar Energy, 2020, 208: 643-651.
|
[7] |
SU B Y, CHEN H Y, CHEN P, et al. Deep learning-based solar-cell manufacturing defect detection with complementary attention network[J]. IEEE Transactions on Industrial informatics, 2020, 17(6):4084-4095.
|
[8] |
HERRAIZ Á H MARUGÁN A P, MÁRQUEZ F P G. Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure[J]. Renewable Energy, 2020, 153:334-348.
|
[9] |
季瑞瑞, 梅远, 杨思凡, 等. 基于改进Faster R-CNN的光伏组件红外热斑检测算法[J]. 激光与红外, 2024, 54(4):584-592.
|
|
JI Ruirui, MEI Yuan, YANG Sifan, et al. Infrared hot spot detection in photovoltaic modules based on improved Faster R-CNN[J]. Laser & Infrared, 2024, 54(4):584-592.
|
[10] |
WANG J, ZHANG R Z, ZHENG X. Photovoltaic panel intelligent detection method based on improved Faster-RCNN[C]// 2023 IEEE 3rd International Conference on Electronic Technology,Communication and Information (ICETCI).IEEE, 2023:1565-1569.
|
[11] |
TRIPATHY S, SATPATHY M. SSD internal cache management policies:A survey[J]. Journal of Systems Architecture, 2022, 122:102334.
|
[12] |
HUSSAIN M. YOLOv1 to v8:Unveiling each varianta comprehensive review of YOLO[J]. IEEE Access, 2024, 12:42816-42833.
|
[13] |
XU M. Solar cell defect detection based on improved G-SSD network[J]. International Journal of Energy, 2023, 2(1):68-71.
|
[14] |
艾上美, 周剑峰, 张必朝, 等. 基于改进SSD算法的光伏组件缺陷检测研究[J]. 智慧电力, 2023, 51(12):53-58.
|
|
AI Shangme, ZHOU Jianfeng, ZHANG Bicha, et al. Defect detection of photovoltaic modules based on improved SSD algorithm[J]. Smart Power, 2023, 51(12):53-58.
|
[15] |
DITOMMASO A, BETTI A, FONTANELLI G, et al. A multi-stage model based on YOLOv3 for defect detection in PV panels based on IR and visible imaging by unmanned aerial vehicle[J]. Renewable energy, 2022, 193:941-962.
|
[16] |
LI L L, WANG Z F, ZHANG T T. GBH-YOLOv5:Ghost convolution with bottleneck and tiny target prediction head incorporating YOLOv5 for PV panel defect detection[J]. Electronics, 2023, 12(3):561.
|
[17] |
ZHANG J L, YANG W, CHEN Y, et al. Fast object detection of anomaly photovoltaic (PV) cells using deep neural networks[J]. Applied Energy, 2024, 372:123759.
|
[18] |
CAO Y K, PANG D D, ZHAO Q C, et al. Improved YOLOv8-GD deep learning model for defect detection in electroluminescence images of solar photovoltaic modules[J]. Engineering Applications of Artificial Intelligence, 2024, 131:107866.
|
[19] |
HANG X Y, ZHU X B, GAO X X, et al. Study on crack monitoring method of wind turbine blade based on AI model:Integration of classification,detection,segmentation and fault level evaluation[J]. Renewable Energy, 2024, 224: 120152.
|
[20] |
HAN K, WANG Y H, TIAN Q, et al. Ghostnet:More features from cheap operations[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020:1580-1589.
|
[21] |
XU W, WAN Y. ELA:Efficient local attention for deep convolutional neural networks[J]. Arxiv Preprint Arxiv, 2024:2403.01123.
|
[22] |
WANG H, LI D, ISSHIKI T. Energy-efficient implementation of YOLOv8,instance segmentation,and pose detection on RISC-V SoC[J]. IEEE Access, 2024, 12:64050-64068.
|
[23] |
TAN M M, PANG R M, LE Q V. Efficientdet:Scalable and efficient object detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:10781-10790.
|
[24] |
任一鸣, 杜董生, 邓祥帅, 等. 基于Real-ESRGAN和改进YOLOv8n的输电线路绝缘子故障检测[J]. 综合智慧能源, 2024, 46(7):29-39.
doi: 10.3969/j.issn.2097-0706.2024.07.004
|
|
REN Yiming, DU Dongsheng, DENG Xiangshuai, et al. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning[J]. Integrated Intelligent Energy, 2024, 46(7):29-39.
doi: 10.3969/j.issn.2097-0706.2024.07.004
|
[25] |
郭岚, 刘正新. 基于改进YOLOv5的光伏组件缺陷检测[J]. 激光与光电子学进展, 2023, 60(20):148-156.
|
|
GUO Lan, LIU Zhengxin. Improved YOLOv5-based defect detection in photovoltaic modules[J]. Laser &Optoelectronics Progress, 2023, 60(20):148-156.
|
[26] |
田浩, 周强, 贺晨龙. 基于多尺度特征融合的光伏组件缺陷检测[J]. 计算机工程与应用, 2024, 60(3):340-347.
doi: 10.3778/j.issn.1002-8331.2304-0390
|
|
TIAN Hao,ZHOU Qiang,HE Chenlong. Defect detection of photovoltaic modules based on multi-scale feature fusion[J]. Computer Engineering and Applications, 2024, 60(3):340-347.
doi: 10.3778/j.issn.1002-8331.2304-0390
|