华电技术 ›› 2015, Vol. 37 ›› Issue (11): 1-4.

• 研究与开发 •    下一篇

基于极限学习机算法的水轮机组振动保护定值整定方法研究

  

  1. 1.贵州电力试验研究院,贵阳 5500052.北京四方继保自动化股份有限公司, 北京 100084
  • 出版日期:2015-11-25

Study on vibration protection value setting method of hydraulic generator unit based on extreme learning machine algorithm

  1. 1.Guizhou Electric Power Test & Research Institute,Guiyang 550005,China;2.Beijing Sifang Automation Company Limited,Beijing 100084,China
  • Published:2015-11-25

摘要:

摘要:水轮机组振动保护定值通常采用试验统计法整定,整定结果的准确性依赖于试验数据的准确度和技术人员的经验和水平,具有一定的局限性,无法满足灵活、准确设置保护定值的需求。提出了一种新的保护定值整定方法,该方法以对历史数据的统计分析为基础,根据水轮机组运行工况的实际情况划分不同的定值区域, 通过极限学习机算法建立各定值区域的振动监测点数值预测模型,最后在模型输出值的基础上实现水轮机组各定值区域的保护定值整定。实验分析证明,该方法依据现场历史运行数据,能够灵活、准确地对各定值区域保护定值进行整定。

关键词: 关键词:水轮机组, 振动保护定值, 极限学习机算法, 试验统计法, 定值整定方法

Abstract:

Abstract:The vibration protection setting value of hydraulic generator unit is set by trial statistics generally and the accuracy of setting result strongly depends on the accuracy of experimental data and the experience of technician,therefore it has certain limitations and cannot meet the demands of flexibility and accuracy for setting the protection value.This paper proposed a new protection value setting method which based on the statistical analysis of historical data.Firstly,different setting value areas are divided according to the operation condition of hydraulic generator unit.After that,a numerical prediction model of the vibration monitoring points for different setting value areas is established through the extreme learning machine (ELM) algorithm.At last,the setting values of different areas are set based on the output values of the model. Experiments proved that the method can set the setting values of different areas flexibly and accurately according to the historical operating data.

Key words: Keywords:hydraulic generator unit, vibration protection setting value, extreme learning machine algorithm, trial statistics, method of value setting