[1] |
檀添, 赵争鸣, 李帛洋, 等. 基于离散状态事件驱动的电力电子瞬态过程仿真方法[J]. 电工技术学报, 2017, 32(13): 41-50.
|
|
TAN Tian, ZHAO Zhengming, LI Boyang, et al. Discrete state event driven based methods for transient simulation of power electronic converters[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 41-50.
|
[2] |
李帛洋, 赵争鸣, 檀添, 等. 后向离散状态事件驱动电力电子仿真方法[J]. 电工技术学报, 2017, 32(12): 42-49.
|
|
LI Boyang, ZHAO Zhengming, TAN Tian, et al. A backword discrete state event driven simulation method for power electronics based on finite state machine[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 42-49.
|
[3] |
CELLIER F E, KOFMAN E. Continuous system simulation[M]. Berlin: Springer Science & Business Media, 2006.
|
[4] |
KOFMAN E, JUNCO S. Quantized-state systems: A DEVS approach for continuous system simulation[J]. Transactions of The Society for Modeling and Simulation International, 2001(3): 123-132.
|
[5] |
KOFMAN E. A second-order approximation for DEVS simulation of continuous systems[J]. Simulation, 2002, 78(2): 76-89.
doi: 10.1177/0037549702078002206
|
[6] |
王维. 基于Modelica的量化状态系统方法实现及其特性分析[D]. 武汉: 华中科技大学, 2017.
|
|
WANG Wei. Implementation and characteristic analysis of quantitative state system method based on Modelica[D]. Wuhan: Huazhong University of Science and Technology, 2017.
|
[7] |
史向文, 林飞, 王超, 等. 基于量化状态时间离散的城轨牵引供电系统动态仿真方法[J]. 机车电传动, 2022(5): 151-158.
|
|
SHI Xiangwen, LIN Fei, WANG Chao, et al. A dynamic simulation method of urban rail traction power supply system based on quantized state time discretization[J]. Electric Drive for Locomotives, 2022(5): 151-158.
|
[8] |
李广. 基于QSS的自适应多步校正算法及其在航天器动力学中的应用[D]. 杭州: 杭州电子科技大学, 2021.
|
|
LI Guang. Adaptive multi-step correction algorithm based on QSS and application in spacecraft dynamics[D]. Hangzhou: Hangzhou Electronic Science and Technology University, 2021.
|
[9] |
陈玉峰, 王家华, 许健, 等. 基于可编程逻辑软件的微电网仿真系统开发[J]. 综合智慧能源, 2022, 44(11): 28-35.
doi: 10.3969/j.issn.2097-0706.2022.11.004
|
|
CHEN Yufeng, WANG Jiahua, XU Jian, et al. Development of the simulation system for microgrids based on programmable logic software[J]. Integrated Intelligent Energy, 2022, 44(11): 28-35.
doi: 10.3969/j.issn.2097-0706.2022.11.004
|
[10] |
王康平, 张兴科, 刘财华, 等. 基于自适应下垂控制的风电场无功电压控制策略[J]. 综合智慧能源, 2022, 44(4): 12-19.
doi: 10.3969/j.issn.2097-0706.2022.04.002
|
|
WANG Kangping, ZHANG Xingke, LIU Caihua, et al. Reactive power and voltage control strategy based on adaptive droop control for wind power plants[J]. Integrated Intelligent Energy, 2022, 44(4): 12-19.
doi: 10.3969/j.issn.2097-0706.2022.04.002
|
[11] |
卞阳, 赵奇剑, 胡水军, 等. 基于云平台的智能配电网电能质量监测预警研究与应用[J]. 华电技术, 2021, 43(1): 31-37.
|
|
BIAN Yang, ZHAO Qijian, HU Shuijun, et al. Research and application on power quality monitoring and warning of intelligent power distribution network based on cloud platform[J]. Huadian Technology, 2021, 43(1): 31-37.
|
[12] |
MIGONI G, BORTOLOTTO M, KOFMAN E, et al. Linearly implicit quantization-based integration methods for stiff ordinary differential equations[J]. Simulation Modelling Practice and Theory, 2013, 35:118-136.
doi: 10.1016/j.simpat.2013.03.004
|
[13] |
余果, 吴军, 夏热, 等. 构网型变流器技术的发展现状与趋势研究[J]. 综合智慧能源, 2022, 44(9): 65-70.
doi: 10.3969/j.issn.2097-0706.2022.09.009
|
|
YU Guo, WU Jun, XIA Re, et al. Study on the status quo and development trend of grid-forming converter technology[J]. Integrated Intelligent Energy, 2022, 44(9): 65-70.
doi: 10.3969/j.issn.2097-0706.2022.09.009
|
[14] |
彭占磊, 杨之乐, 杨文强, 等. 电化学储能参与电力系统规划运行方法综述[J]. 综合智慧能源, 2022, 44(6): 37-44.
doi: 10.3969/j.issn.2097-0706.2022.06.004
|
|
PENG Zhanlei, YANG Zhile, YANG Wenqiang, et al. Review on planning and operation methods for power system with participation of electrochemical energy storage systems[J]. Integrated Intelligent Energy, 2022, 44(6): 37-44.
doi: 10.3969/j.issn.2097-0706.2022.06.004
|
[15] |
梁曦文, 王映品, 李林, 等. 有源电力滤波器直流电压简单模糊比例控制[J]. 综合智慧能源, 2022, 44(4): 28-35.
doi: 10.3969/j.issn.2097-0706.2022.04.004
|
|
LIANG Xiwen, WANG Yingpin, LI Lin, et al. Simple fuzzy proportional control on DC-link voltage of active power filters[J]. Integrated Intelligent Energy, 2022, 44(4): 28-35.
doi: 10.3969/j.issn.2097-0706.2022.04.004
|