[1] |
姚芳, 杨晓娜, 葛磊蛟, 等. 风-光-氢能源系统容量优化配置研究[J]. 综合智慧能源, 2022, 44(5):56-63.
doi: 10.3969/j.issn.2097-0706.2022.05.006
|
|
YAO Fang, YANG Xiaona, GE Leijiao, et al. Optimization of capacity allocation scheme for wind-solar-hydrogen energy system[J]. Integrated Intelligent Energy, 2022, 44(5): 56-63.
doi: 10.3969/j.issn.2097-0706.2022.05.006
|
[2] |
蔡源, 吴浩, 唐丹. 光伏发电功率预测方法综述[J]. 四川电力技术, 2024, 47(2):25-31.
|
|
CAI Yuan, WU Hao, TANG Dan. Reviews of photovoltaic power prediction methods[J]. Sichuan Electric Power Technology, 2024, 47(2):25-31.
|
[3] |
KUMARI P, TOSHNIWAL D. Deep learning models for solar irradiance forecasting: A comprehensive review[J]. Journal of Cleaner Production, 2021, 318: 128566.
|
[4] |
倪超, 王聪, 朱婷婷, 等. 基于CNN-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报, 2022, 43(3):197-202.
doi: 10.19912/j.0254-0096.tynxb.2020-0581
|
|
NI Chao, WANG Cong, ZHU Tingting, et al. Super-short-term forecast of solar irradiance based on CNN-Bi-LSTM[J]. Acta Energiae Solaris Sinica, 2022, 43(3):197-202.
doi: 10.19912/j.0254-0096.tynxb.2020-0581
|
[5] |
AHMED R, SREERAM V, MISHRA Y, et al. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization[J]. Renewable and Sustainable Energy Reviews, 2020, 124: 109792.
|
[6] |
杨帆, 申亚, 李东东, 等. 基于GA-GNNM的极地光伏发电功率预测方法[J]. 太阳能学报, 2022, 43(4):167-174.
doi: 10.19912/j.0254-0096.tynxb.2020-0768
|
|
YANG Fan, SHEN Ya, LI Dongdong, et al. Polar photovoltaic power forecasting method based on GA-GNNM[J]. Acta Energiae Solaris Sinica, 2022, 43(4):167-174.
doi: 10.19912/j.0254-0096.tynxb.2020-0768
|
[7] |
LIU C C, LI M. YU Y J, et al. A review of multitemporal and multispatial scales photovoltaic forecasting methods[J]. IEEE Access, 2022, 10: 35073-35093.
|
[8] |
吴峰, 王飞, 顾康慧, 等. 基于MEEMD-ARIMA模型的波浪能发电系统输出功率预测[J]. 电力系统自动化, 2021, 45(1):65-70.
|
|
WU Feng, WANG Fei, GU Kanghui, et al. Output power prediction of wave energy generation system based on modified ensemble empirical mode decomposition-autoregressive integrated moving average model[J]. Automation of Electric Power Systems, 2021, 45(1):65-70.
|
[9] |
丁坤, 刘增泉, 张经炜, 等. 基于图像奇异值分解的局部遮挡光伏阵列输出特性建模研究[J]. 综合智慧能源, 2023, 45(2): 53-60.
doi: 10.3969/j.issn.2097-0706.2023.02.007
|
|
DING Kun, LIU Zengquan, ZHANG Jingwei, et al. Modeling for output characteristics of the partially occluded photovoltaic array based on image singular value decomposition[J]. Integrated Intelligent Energy, 2023, 45(2):53-60.
doi: 10.3969/j.issn.2097-0706.2023.02.007
|
[10] |
缪月森, 夏红军, 黄宁洁, 等. 基于Informer的负荷及光伏出力系数预测[J]. 综合智慧能源, 2024, 46(4): 60-67.
doi: 10.3969/j.issn.2097-0706.2024.04.008
|
|
MIAO Yuesen, XIA Hongjun, HUANG Ningjie, et al. Prediction on loads and photovoltaic output coefficients based on Informer[J]. Integrated Intelligent Energy, 2024, 46(4): 60-67.
doi: 10.3969/j.issn.2097-0706.2024.04.008
|
[11] |
LINDBERG O, LINGFORS D, ARNQVIST J, et al. Day-ahead probabilistic forecasting at a co-located wind and solar power park in Sweden: trading and forecast verification[J]. Advances in Applied Energy, 2023, 9: 100120.
|
[12] |
万灿, 崔文康, 宋永华. 新能源电力系统概率预测:基本概念与数学原理[J]. 中国电机工程学报, 2021, 41(19):6493-6509.
|
|
WAN Can, CUI Wenkang, SONG Yonghua. Probabilistic forecasting for power systems with renewable energy sources: basic concepts and mathematical principles[J]. Proceedings of the CSEE, 2021, 41(19): 6493-6509.
|
[13] |
GOLESTANEH F, PINSON P, GOOI H B. Very Short-term nonparametric probabilistic forecasting of renewable energy generation—With application to solar energy[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3850-3863.
|
[14] |
HUANG Q, WEI S Y. Improved quantile convolutional neural network with two-stage training for daily-ahead probabilistic forecasting of photovoltaic power[J]. Energy Conversion and Management, 2020, 220: 113085.
|
[15] |
GU B, SHEN H Q, LEI X H, et al. Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method[J]. Applied Energy, 2021, 299: 117291.
|
[16] |
ZHANG X Y, WATKINS C, KUENZEL S. Multi-quantile recurrent neural network for feeder-level probabilistic energy disaggregation considering roof-top solar energy[J]. Engineering Applications of Artificial Intelligence, 2022, 110:104707.
|
[17] |
吴永洪, 张智斌. 基于贝叶斯优化的CNN-GRU短期电力负荷预测[J]. 现代电子技术, 2023, 46(20):125-129.
|
|
WU Yonghong, ZHANG Zhibin. CNN-GRU short-term power load forecasting based on Bayesian optimization[J]. Modern Electronics Technique, 2023, 46(20):125-129.
|
[18] |
LIMOUNI T, YAAGOUBI R, BOUZIANE K, et al. Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model[J]. Renewable Energy, 2023, 205:1010-1024.
|
[19] |
ZHANG M Y, HAN Y, WANG C Y et al. Ultra-short-term photovoltaic power prediction based on similar day clustering and temporal convolutional network with bidirectional long short-term memory model: A case study using DKASC data[J]. Applied Energy, 2024, 375:124085.
|
[20] |
庞昊, 高金峰, 杜耀恒. 基于时间卷积网络分位数回归的短期负荷概率密度预测方法[J]. 电网技术, 2020, 44(4):1343-1350.
|
|
PANG Hao, GAO Jinfeng,DU Yaoheng. A short-term load probability density prediction based on quantile regression of time convolution network[J]. Power System Technology, 2020, 44 (4): 1343-1350.
|
[21] |
陈禹帆, 温蜜, 张凯, 等. 基于相似日匹配及TCN-Attention的短期光伏出力预测[J]. 电测与仪表, 2022, 59(10):108-116.
|
|
CHEN Yufan, WEN Mi, ZHANG Kai, et al. Short-term photovoltaic output forecasting based on similar day matching and TCN-Attention[J]. Electrical Measurement & Instrumentation, 2022, 59(10): 108- 116.
|
[22] |
XIANG X L, LI X Y, ZHANG Y L, et al. A short-term forecasting method for photovoltaic power generation based on the TCN-ECANet-GRU hybrid model[J]. Scientific Reports, 2024, 14(1):6744.
doi: 10.1038/s41598-024-56751-6
pmid: 38509109
|
[23] |
LIN Y, KOPRINSKA I, RANA M. Temporal convolutional neural networks for solar power forecasting[C]// Proceedings of 2020 International Joint Conference on Neural Networks (IJCNN), IEEE, 2020: 1-8.
|
[24] |
崔京港, 王芳, 叶泽甫, 等. 基于QD和因果注意力TCN的光伏功率区间预测[J]. 太阳能学报, 2024, 45(3): 488-495.
|
|
CUI Jinggang, WANG Fang, YE Zefu, et al. Photovoltaic power interval prediction based on QD and causal attention TCN[J]. Acta Energiae Solaris Sinica, 2024, 45(3): 488-495.
|
[25] |
KIM J, OBREGON J, PARK H, et al. Multi-step photovoltaic power forecasting using transformer and recurrent neural networks[J]. Renewable and Sustainable Energy Reviews, 2024, 200: 114479.
|
[26] |
TAO K J, ZHAO J H, TAO Y, et al. Operational day-ahead photovoltaic power forecasting based on transformer variant[J]. Applied Energy, 2024, 373: 123825.
|
[27] |
王腾飞, 杨力, 孙龙, 等. 基于C-Transformer的光伏负荷预测方法[J/OL]. 微电子学与计算机,1-9(2024-07-22)[2024-08-01]. http://kns.cnki.net/kcms/detail/61.1123.TN.20240719.1609.006.html.
|
|
WANG Tengfei, YANG Li, SUN Long, et al. Transformer based photovoltaic load prediction method[J/OL]. Microelectronics & Computer,1-9(2024-07-22)[2024-08-01]. http://kns.cnki.net/kcms/detail/61.1123.TN.20240719.1609.006.html.
|
[28] |
黄莉, 甘恒玉, 刘兴举, 等. 基于Transformer编码器的超短期光伏发电功率预测[J]. 智慧电力, 2024, 52(5):16-22,59.
|
|
HUANG Li, GAN Hengyu, LIU Xingju, et al. Ultra-short-term photovoltaic power generation prediction based on trans-formerencoder[J]. Smart Power, 2024, 52(5):16-22,59.
|