综合智慧能源 ›› 2024, Vol. 46 ›› Issue (11): 38-45.doi: 10.3969/j.issn.2097-0706.2024.11.005

• 人工智能赋能的运维与巡检 • 上一篇    下一篇

基于改进TCN模型的变压器故障诊断方法研究

徐波1(), 魏艺君1(), 邓芳明2,*()   

  1. 1.国网江西省电力有限公司超高压分公司,南昌 330096
    2.华东交通大学 电气与自动化工程学院,南昌 330013
  • 收稿日期:2024-05-27 修回日期:2024-09-10 出版日期:2024-11-25
  • 通讯作者: * 邓芳明(1980),男,教授,博士,从事电气设备状态监测技术方面的研究,1193068400@qq.com
  • 作者简介:徐波(1978),男,高级工程师,从事电力人工智能、电力机器人、智能运检技术等方面的研究,1994830366@qq.com
    魏艺君(1995),女,工程师,硕士,从事智能电网技术、电力人工智能、电力机器人等方面的研究,2404694858@qq.com
  • 基金资助:
    国家自然科学基金项目(52277148);国家自然科学基金项目(52377103)

Research on transformer fault diagnosis method based on improved TCN model

XU Bo1(), WEI Yijun1(), DENG Fangming2,*()   

  1. 1. State Grid Jiangxi Electric Power Company Limited, Extra High Voltage Branch, Nanchang 330096, China
    2. School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China
  • Received:2024-05-27 Revised:2024-09-10 Published:2024-11-25
  • Supported by:
    National Natural Science Foundation of China(52277148);National Natural Science Foundation of China(52377103)

摘要:

针对传统机器学习的变压器诊断方法受限于精度较低、信息数据来源单一和故障样本稀缺等问题,提出一种多源异构数据融合技术和泥环优化算法(MRA)优化时间卷积网络(TCN)的变压器故障诊断模型。通过选择油色谱分析数据、红外高压套管检测图谱、超声波放电检测图谱以及局部放电特高频检测图谱作为变压器故障诊断模型的输入信息,采用Informer网络和残差网络(ResNet)对不同类型的数据分别进行特征提取与学习,同时对多类型数据的特征进行融合,结合MRA算法对TCN网络参数进行优化,综合结果进行故障诊断分类。试验结果表明,本文方法纳什效率系数为0.82且准确率达到了94.83%,收敛速度更快,由此证明本文所提方法可以有效提高变压器故障诊断性能。

关键词: 变压器, 故障诊断, 泥环优化算法, 多源异构数据融合, 时间卷积网络

Abstract:

Transformer diagnosis methods based on traditional machine learning have been limited by low accuracy, single-source data, and a scarcity of fault samples. This paper proposes a transformer fault diagnosis model utilizing multi-source heterogeneous data fusion and the Mud Ring Algorithm (MRA) to optimize the Temporal Convolutional Network (TCN). Oil chromatography data, infrared high-voltage bushing detection images, ultrasonic discharge detection images, and ultra-high frequency partial discharge detection images were selected as input information for the transformer fault diagnosis model. The Informer network and ResNet (Residual Network) were applied to extract and learn features from different data types, followed by feature fusion of multi-type data. The MRA algorithm was used to optimize the parameters of the TCN network, and the integrated results were used for fault classification. Experimental results showed that the proposed method achieved a Nash efficiency coefficient of 0.82 and an accuracy of 94.83%, with faster convergence, demonstrating its effectiveness in enhancing transformer fault diagnosis performance.

Key words: transformer, fault diagnosis, mud ring algorithm, multi-source heterogeneous data fusion, temporal convolutional network

中图分类号: