综合智慧能源 ›› 2024, Vol. 46 ›› Issue (3): 54-62.doi: 10.3969/j.issn.2097-0706.2024.03.007
任一鸣(), 杜董生(
), 邓祥帅(
), 连贺(
), 赵哲敏(
)
收稿日期:
2023-07-19
修回日期:
2023-10-23
出版日期:
2024-03-25
通讯作者:
杜董生 *(1979),男,教授,博士,从事故障诊断及容错控制方面的研究,dshdu@163.com;作者简介:
任一鸣(1999),男,硕士生,从事基于机器学习的故障诊断方面的研究,renym1129@163.com;基金资助:
REN Yiming(), DU Dongsheng(
), DENG Xiangshuai(
), LIAN He(
), ZHAO Zhemin(
)
Received:
2023-07-19
Revised:
2023-10-23
Published:
2024-03-25
Supported by:
摘要:
为实现电力线路故障的高精度检测和分类,设计并实现了基于机器学习的电力线路故障诊断系统,核心模块是机器学习经典算法中门控循环单元(GRU)神经网络和核极限学习机(KELM)。利用GRU对电力数据进行故障诊断,将正常数据与故障数据高精度地区分开来;利用灰狼优化(GWO)算法对KELM的核参数和惩罚因子进行寻优,使KELM获得了最佳参数;利用KELM进行故障分类,成功将不同种类的故障区分开。试验证明,GRU在数据集的准确率高达98%,得到了最优参数的KELM在数据集中准确率高达99%;利用模拟退火算法(SA)进行了准确率比对,证实了GWO算法的优越性。还对数据集中的电压和电流进行了数据可视化,简洁直观地表达了数据集,为电力线路故障诊断提供了一个切实有效的方法。
中图分类号:
任一鸣, 杜董生, 邓祥帅, 连贺, 赵哲敏. 基于GRU和GWO-KELM的电力线路故障诊断[J]. 综合智慧能源, 2024, 46(3): 54-62.
REN Yiming, DU Dongsheng, DENG Xiangshuai, LIAN He, ZHAO Zhemin. Power line fault diagnosis based on GRU and GWO-KELM[J]. Integrated Intelligent Energy, 2024, 46(3): 54-62.
[1] | 许保瑜, 赵毅林, 陈庆宁, 等. 输电线路移动式不间断自主智能巡检技术研究[J]. 电测与仪表, 2021, 58(11): 157-163. |
XU Baoyu, ZHAO Yilin, CHEN Qingning, et al. Research on mobile uninterrupted autonomous intelligent inspection technology for transmission line[J]. Electrical Measurement and Instrumentation, 2021, 58(11): 157-163. | |
[2] | 陈军, 隋佳闽, 赵子涵, 等. 输电线路断线故障保护逻辑分析及附加判别方法[J]. 电力系统保护与控制, 2022, 50(4):103-111. |
CHEN Jun, SUI Jiamin, ZHAO Zihan, et al. Protection logic analysis and additional judgment method of a transmission line break fault[J]. Power System Protection and Control, 2022, 50(4): 103-111 | |
[3] | 何攻, 何潜, 季巧宇, 等. 一种新型电力线路故障处理方法在重庆电网的实用化研究[J]. 电工技术, 2023(3):10-15. |
HE Gong, HE Qian, JI Qiaoyu, et al. Practical research on a new power line fault handling methods in Chongqing power grid[J]. Electric Engineering, 2023(3):10-15. | |
[4] |
魏伟, 高赐威, 宋梦, 等. 基于HHO-SVM的电力线路故障检测分类系统[J]. 综合智慧能源, 2023, 45(3):1-8.
doi: 10.3969/j.issn.2097-0706.2023.03.001 |
WEI Wei, GAO Ciwei, SONG Wei, et al. Power line fault detection and classification system based on HHO-SVM[J]. Integrated Intelligent Energy, 2023, 45(3):1-8.
doi: 10.3969/j.issn.2097-0706.2023.03.001 |
|
[5] | 董诗焘, 路学刚, 孙华利, 等. 基于信号分析技术和人工智能算法的电力线路故障定位研究[J]. 能源与环保, 2022, 44(11):35-40. |
DONG Shitao, LU Xuegang, SUN Huali, et al. Research on power line fault location based on signal analysis technology and artificial intelligence algorithm[J]. China Energy and Environmental Protection, 2022, 44(11):35-40. | |
[6] | 陈巍. 电力输配电线路的运行维护及故障排除分析[J]. 科技创新与应用, 2022, 12(7):125-127. |
CHEN Wei. Analysis of operation,maintenance,and troubleshooting of electric power transmission and distribution lines[J]. Technology Innovation and Application, 2022, 12(7): 125-127. | |
[7] | 王沛. 基于大数据技术的输电线路运行故障诊断关键技术[J]. 电测与仪表, 2021, 58(5): 182-189. |
WANG Pei. Key technologies of fault diagnosis for transmission line operation based on big data technology[J]. Electrical Measurement & Instrumentation, 2021, 58(5): 182-189. | |
[8] |
KAFEEL A, AZIZ S, AWAIS M, et al. An expert system for rotating machine fault detection using vibration signal analysis[J]. Sensors, 2021, 21(22): 7587.
doi: 10.3390/s21227587 |
[9] |
MAZZOLENI M, SARDA K, ACERNESE A, et al. A fuzzy logic-based approach for fault diagnosis and condition monitoring of industry 4.0 manufacturing processes[J]. Engineering Applications of Artificial Intelligence, 2022, 115: 105317.
doi: 10.1016/j.engappai.2022.105317 |
[10] |
WANG X Y. A fuzzy neural network-based automatic fault diagnosis method for permanent magnet synchronous generators[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 8933-8953.
doi: 10.3934/mbe.2023392 pmid: 37161228 |
[11] |
ZHU G H, ZHANG J F, ZHENG Z, et al. Optimistic fault diagnosis in discrete event systems by labeled petri nets and basis markings[J]. International Journal of Control, Automation and Systems, 2022, 20(6): 1891-1903.
doi: 10.1007/s12555-021-0215-9 |
[12] |
LI Y Y, WANG Y, ZHU G H, et al. Fault diagnosis of PLC-based discrete event systems using Petri nets[J]. Measurement and Control, 2022, 55(9-10): 960-973.
doi: 10.1177/00202940221117098 |
[13] |
WEI M H, ZHENG Z H, BAI X, et al. Application of rough set and neural network in water energy utilization[J]. Frontiers in Energy Research, 2021, 9: 604660.
doi: 10.3389/fenrg.2021.604660 |
[14] | ZHOU H, WANG Z, SHI C, et al. Study of fault diagnosis distribution network based on rough set and artificial intelligence[C]// Journal of Physics: Conference Series. IOP Publishing, 2021, 1754(1): 012204. |
[15] |
ENCALADA-DÁVILA Á, MOYÓN L, TUTIVÉN C, et al. Early fault detection in the main bearing of wind turbines based on Gated Recurrent Unit(GRU) neural networks and SCADA data[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5583-5593.
doi: 10.1109/TMECH.2022.3185675 |
[16] |
WANG C, PENG Z M, LIU R, et al. Research on multi-fault diagnosis method based on time domain features of vibration signals[J]. Sensors, 2022, 22(21): 8164.
doi: 10.3390/s22218164 |
[17] | LV Y X, DONG Y W, LI Y, et al. Submarine cable fault identification based on FCN-GRU-SVM[C]// E3S Web of Conferences. EDP Sciences, 2022, 360. |
[18] |
LIANG R J, CHEN Y, ZHU R P. A novel fault diagnosis method based on the KELM optimized by whale optimization algorithm[J]. Machines, 2022, 10(2): 93.
doi: 10.3390/machines10020093 |
[19] |
FEI S W, LIU Y Z. Fault diagnosis method of bearing utilizing GLCM and MBASA-based KELM[J]. Scientific Reports, 2022, 12(1): 17368.
doi: 10.1038/s41598-022-19209-1 |
[20] |
GONG J C, YANG X Q, HAN J, et al. A new comprehensive automatic fault detection method for rotating machinery using HmvAAPE and VNWOA-KELM[J]. Applied Intelligence, 2023, 53(1): 204-225.
doi: 10.1007/s10489-022-03505-4 |
[21] |
HOU Y X, GAO H B, WANG Z J, et al. Improved grey wolf optimization algorithm and application[J]. Sensors, 2022, 22(10): 3810.
doi: 10.3390/s22103810 |
[22] |
SADEGHI A H, BANI E A, FALLAHI A, et al. Grey wolf optimizer and whale optimization algorithm for stochastic inventory management of reusable products in a two-level supply chain[J]. IEEE Access, 2023, 11:40278-40297.
doi: 10.1109/ACCESS.2023.3269292 |
[23] | LIU X Y, WANG Y F, ZHOU M L. Dimensional learning strategy-based grey wolf optimizer for solving the global optimization problem[J]. Computational Intelligence and Neuroscience, 2022, 2022:3603607. |
[24] |
ALNOWIBET K A, MAHDI S, EL-ALEM M, et al. Guided hybrid modified simulated annealing algorithm for solving constrained global optimization problems[J]. Mathematics, 2022, 10(8): 1312.
doi: 10.3390/math10081312 |
[25] |
PEI J, XU L, HUANG Y T, et al. A Two-step simulated annealing algorithm for spectral data feature extraction[J]. Sensors, 2023, 23(2): 893.
doi: 10.3390/s23020893 |
[26] | 赵国涛, 钱国明, 王盛, 等. “双碳”目标下火电企业绿色低碳转型的对策分析[J]. 华电技术, 2021, 43(10): 11-21. |
ZHAO Guotao, QIAN Guoming, WANG Sheng, et al. Analysis on solution for green and low-carbon transformation of thermal power enterprises to achieve carbon peak and carbon neutrality[J]. Huadian Technology, 2021, 43(10): 11-21. | |
[27] |
高明, 陈家豪, 王丽晓, 等. 考虑光伏不确定性因素的电力系统概率潮流三点估计法[J]. 综合智慧能源, 2022, 44(9): 1-10.
doi: 10.3969/j.issn.2097-0706.2022.09.001 |
GAO Ming, CHEN Jiahao, WANG Lixiao, et al. A three-point probabilistic load flow estimation algorithm for the power system considering photovoltaic uncertainties[J]. Integrated Intelligent Energy, 2022, 44(9): 1-10.
doi: 10.3969/j.issn.2097-0706.2022.09.001 |
|
[28] |
曾慧, 杜源, 李涛, 等. 考虑碳交易与绿证交易的电-热耦合园区低碳规划[J]. 综合智慧能源, 2023, 45(2): 22-29.
doi: 10.3969/j.issn.2097-0706.2023.02.003 |
ZENG Hui, DU Yuan, LI Tao, et al. Low-carbon planning of a park-level integrated electric and heating system considering carbon trading and green certificate trading[J]. Integrated Intelligent Energy, 2023, 45(2): 22-29.
doi: 10.3969/j.issn.2097-0706.2023.02.003 |
[1] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[2] | 冯骥, 杨国华, 史磊, 潘欢, 陆宇翔, 张元曦, 李祯. 基于并行融合深度残差收缩网络的有源配电网故障诊断[J]. 综合智慧能源, 2024, 46(6): 8-15. |
[3] | 朱卫卫, 朱清, 高文森, 刘财华, 王录泽, 刘增稷. 基于5G通信时延的配电网馈线自动化切换方法[J]. 综合智慧能源, 2024, 46(5): 1-11. |
[4] | 王亮, 邓松. 面向新型电力系统的异常数据检测方法[J]. 综合智慧能源, 2024, 46(5): 12-19. |
[5] | 汪李忠, 池建飞, 丁叶强, 姚海燕, 唐志鹏, 吴同宇. 基于NNTR-SMOTE与GA-XGBoost的变压器故障诊断方法研究[J]. 综合智慧能源, 2024, 46(1): 84-93. |
[6] | 金立, 张力, 唐杨, 唐侨, 任炬光, 杨焜, 刘小兵. 考虑温湿指数与耦合特征的综合能源负荷短期预测[J]. 综合智慧能源, 2023, 45(7): 70-77. |
[7] | 魏伟, 高赐威, 宋梦, 明昊. 基于HHO-SVM的电力线路故障检测分类系统[J]. 综合智慧能源, 2023, 45(3): 1-8. |
[8] | 肖宏磊, 留毅, 夏红军, 缪宇峰, 俞啸玲, 杨海琦. 基于PCA与SSA-LightGBM的油浸式变压器故障诊断方法[J]. 综合智慧能源, 2023, 45(3): 9-16. |
[9] | 陆潍潍, 殷林飞. 基于CEEMD与GWO-LSTM的精细非侵入性负荷监测[J]. 综合智慧能源, 2023, 45(11): 36-44. |
[10] | 杨晓燕, 谢满承, 郭小璇, 赵岩, 陈翀旻, 陈子民, 廖卓颖. 基于改进原子轨道搜索算法优化随机森林分类器的光伏系统故障诊断[J]. 综合智慧能源, 2023, 45(10): 53-60. |
[11] | 龙思成, 黄志鸿. 基于多尺度极限融合网络的电力变压器故障诊断方法研究[J]. 综合智慧能源, 2022, 44(9): 78-83. |
[12] | 李彩霞, 赵军, 李建伟, 王伟, 王杰, 于浩洋. 基于数据驱动的CFB机组变负荷工况SO2质量浓度建模[J]. 综合智慧能源, 2022, 44(3): 63-69. |
[13] | 侯鲁洋, 葛磊蛟, 王飚, 王宣元, 徐连明, 王莉. 面向新型产消者的综合能源系统和电力市场研究[J]. 综合智慧能源, 2022, 44(12): 40-48. |
[14] | 贾志军, 白德龙, 宋燕杰, 王剑飞, 李春新. 基于KPCA算法的电厂设备在线故障诊断研究[J]. 华电技术, 2021, 43(8): 48-53. |
[15] | 姜寅,任荭葳,陈凯,朱长江. 基于BP神经网络的风电系统控制器I/O硬件故障自诊断方法[J]. 华电技术, 2020, 42(5): 55-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||