[1] |
赵春宇, 吴红石, 熊志群, 等. 高压输电线路的防雷技术[J]. 模具制造, 2023, 23(11): 175-177.
|
|
ZHAO Chunyu, WU Hongshi, XIONG Zhiqun, et al. Lightning protection technology for high-voltage transmission lines[J]. Mold Manufacturing, 2023, 23(11): 175-177.
|
[2] |
赵鑫, 钱本华, 王睿, 等. 电化学储能参与电网安全稳定控制的研究综述[J]. 综合智慧能源, 2023, 45(1):58-66.
doi: 10.3969/j.issn.2097-0706.2023.01.007
|
|
ZHAO Xin, QIAN Benhua, WANG Rui, et al. A review of research on the participation of electrochemical energy storage in power grid safety and stability control[J]. Integrated Intelligent Energy, 2023, 45(1): 58-66.
doi: 10.3969/j.issn.2097-0706.2023.01.007
|
[3] |
王江, 薛铁柱, 魏龙. 无人机盘煤在火力发电企业燃料管理中的应用[J]. 华电技术, 2019, 41(6):78-80.
|
|
WANG Jiang, XUE Tiezhu, WEI Long. Application of unmannedaerial vehicle coal mining infuel management of thermal power generation enterprises[J]. Huadian Technology, 2019, 41(6):78-80.
|
[4] |
杨瑞鹏. 输电线路无人机巡检系统对绝缘子检测的前沿技术[J]. 电器工业, 2023(11):65-67.
|
|
YANG Ruipeng. The cutting-edge technology of insulator detection in unmanned aerial vehicle inspection systems for transmission lines[J]. Electrical Industry, 2023(11):65-67.
|
[5] |
肖新帅, 田秀霞, 徐曼. 基于端到端算法的绝缘子检测技术研究[J]. 华电技术, 2021, 43(2):28-33.
|
|
XIAO Xinshuai, TIAN Xiuxia, XU Man. Research on insulator detection technology based on end-to-end algorithm[J]. Huadian Technology, 2021, 43(2):28-33.
|
[6] |
NAWAZ S A, LI J B, BHATTI U A, et al. AI-based object detection latest trends in remote sensing, multimedia and agriculture applications[J]. Frontiers in Plant Science, 2022, 13: 1041514.
|
[7] |
SHETTY A K, SAHA I, SANGHVI R M, et al. A review: Object detection models[C]// International Conference for Convergence in Technology (I2CT),IEEE, 2021: 1-8.
|
[8] |
VASHISHT M, KUMAR B. A survey paper on object detection methods in image processing[C]// International Conference on Computer Science,Engineering and Applications (ICCSEA),IEEE, 2020: 1-4.
|
[9] |
崔得东, 冯涛, 白昆, 等. 复杂背景目标探测识别技术综述[J]. 前瞻科技, 2022, 1(4): 69-80.
doi: 10.3981/j.issn.2097-0781.2022.04.005
|
|
CUI Dedong, FENG Tao, BAI Kun, et al. Overview of complex background target detection and recognition technology[J]. Forward Technology, 2022, 1(4): 69-80.
|
[10] |
刘颖, 刘红燕, 范九伦, 等. 基于深度学习的小目标检测研究与应用综述[J]. 电子学报, 2020, 48(3): 590-601.
doi: 10.3969/j.issn.0372-2112.2020.03.024
|
|
LIU Ying, LIU Hongyan, FAN Jiulun, et al. A review of research and application on small object detection based on deep learning[J]. Journal of Electronics, 2020, 48 (3):590-601.
|
[11] |
ZHOU X, JIANG L, HU C X, et al. YOLO-SASE: An improved YOLO algorithm for the small targets detection in complex backgrounds[J]. Sensors, 2022, 22(12):4600-4614.
|
[12] |
SUN C Y, CHEN Y J, XIAO C, et al. YOLOv5s-DSD: An improved aerial image detection algorithm based on YOLOv5s[J]. Sensors(Basel), 2023, 23(15):6905-6920.
|
[13] |
LIN Z W, HUANG M, ZHOU Q H. Infrared small target detection based on YOLOv4[C]// Journal of Physics: Conference Series, 2023, 2450(1): 012019.
|
[14] |
ZHAO L, ZHI L Q, ZHAO C, et al. Fire-YOLO: A small target object detection method for fire inspection[J]. Sustainability, 2022, 14(9): 4930.
|
[15] |
PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction: a technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3):21-36.
|
[16] |
ZHANG J, SHAO M H, YU L L, et al. Image super-resolution reconstruction based on sparse representation and deep learning[J]. Signal Processing: Image Communication, 2020, 87:115925.
|
[17] |
GU J J, LU H N, ZUO W M, et al. Blind super-resolution with iterative kernel correction[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1604-1613.
|
[18] |
GRAVES D, PEDRYCZ W. Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study[J]. Fuzzy Sets and Systems, 2010, 161(4): 522-543.
|
[19] |
WANG X T, YU K, WU S X, et al. Esrgan: Enhanced super-resolution generative adversarial networks[C]// Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018:1-16.
|
[20] |
JANG D W, PARK R H. DenseNet with deep residual channel-attention blocks for single image super resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019: 1-9.
|
[21] |
SCHONFELD E, SCHIELE B, KHOREVA A. A U-Net based discriminator for generative adversarial networks[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:8207-8216.
|
[22] |
MUTHUKUMAR V, NARANG A, SUBRAMANIAN V, et al. Classification vs regression in overparameterized regimes: Does the loss function matter?[J]. Journal of Machine Learning Research, 2021, 22(222): 1-69.
|
[23] |
LU X K, MA C, NI B B, et al. Deep regression tracking with shrinkage loss[C]// Proceedings of the European Conference on Computer vision (ECCV), 2018:353-369.
|
[24] |
LIU X Y, PENG H W, ZHENG N X, et al. EfficientViT: Memory efficient vision transformer with cascaded group attention[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023:14420-14430.
|
[25] |
WANG Y, LI Y, TONG H H, et al. HIT: Nested named entity recognition via head-tail pair and token interaction[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP), 2020: 6027-6036.
|
[26] |
HORVÁTH A, HILLMER M, LOU Q, et al. Cellular neural network friendly convolutional neural networks——CNNs with CNNs[C]// Design,Automation & Test in Europe Conference & Exhibition (DATE),IEEE, 2017: 145-150.
|