综合智慧能源 ›› 2025, Vol. 47 ›› Issue (9): 1-9.doi: 10.3969/j.issn.2097-0706.2025.09.001

• 电力系统韧性机理与主动防御 •    下一篇

电力系统高危N-k故障的高危断面辨识与保护配置

黄子书1(), 蔡晔1,*(), 孙溶佐1(), 谭玉东2   

  1. 1.长沙理工大学 防灾减灾全国重点实验室,长沙 410114
    2.国网湖南省电力有限公司经济技术研究院, 长沙 410004
  • 收稿日期:2024-12-05 修回日期:2025-01-15 出版日期:2025-09-25
  • 通讯作者: * 蔡晔(1988),女,副教授,博士,从事电力系统运行与控制、电力市场方面的研究,caiye1988427@126.com
  • 作者简介:黄子书(2001),男,硕士生,从事电力系统安全稳定分析与韧性提升方面的研究,643783077@qq.com
    孙溶佐(1998),男,博士生,从事电力系统安全稳定分析与韧性提升方面的研究,1574259113@qq.com
  • 基金资助:
    国家自然科学基金项目(52277076);湖南省研究生科研创新项目(kq2306011);长沙市杰出创新人才项目(CX20240783)

Critical section identification and protection configuration for high-risk N-k faults in power systems

HUANG Zishu1(), CAI Ye1,*(), SUN Rongzuo1(), TAN Yudong2   

  1. 1. State Key Laboratory of Power Grid Disaster Prevention and Reduction, Changsha University of Science and Technology,Changsha 410114,China
    2. State Grid Economic and Technological Research Institute of Hunan,Changsha 410004,China
  • Received:2024-12-05 Revised:2025-01-15 Published:2025-09-25
  • Supported by:
    National Natural Science Foundation(52277076);Outstanding Innovation Talent Project of Changsha(kq2306011);Hunan Province Graduate Student Research and Innovation Project(CX20240783)

摘要:

针对电力系统N-k连锁故障源发场景多样、故障传播路径复杂、保护策略实施对象难以界定等问题,提出一种结合极限梯度提升(XGBoost)与贝叶斯超参数优化的高危断面辨识与保护配置模型。通过搭建高危N-k故障集,随机模拟0.1~10.0负载率下的连锁故障,构建以线路负载率为输入、剩余负荷为输出目标的连锁故障数据集;使用贝叶斯优化算法调整XGBoost模型超参数,选择最优参数组合;辨识高危N-k故障场景下的保护资源配置策略。在IEEE 39节点系统上的仿真结果表明,对高危N-k故障集中88%的场景,通过调整高危断面3条线路的潮流承载能力,系统剩余负荷可维持在80%以上。

关键词: 连锁故障, 断面辨识, 贝叶斯超参数优化, 数据驱动, XGBoost算法, 机器学习

Abstract:

To address issues such as diverse N-k cascading fault scenarios, complex fault propagation paths, and difficulties in determining protection strategy implementation targets, a critical section identification and protection configuration model that integrates XGBoost with Bayesian hyperparameter optimization is proposed in power systems. By constructing a high-risk N-k fault set and randomly simulating cascading faults under load rates ranging from 0.1~10.0, a cascading fault dataset was developed using line load rates as inputs and residual load as the target. The Bayesian optimization algorithm was used to fine-tune the hyperparameters of the XGBoost model, selecting the optimal parameter combination. The protection resource allocation strategies for high-risk N-k fault scenarios were then identified. Simulation results on the IEEE 39-bus system showed that for 88% of high-risk N-k fault scenarios, adjusting the power flow carrying capacity of three critical section lines enabled the system's residual load to remain above 80%.

Key words: cascading faults, section identification, Bayesian hyperparameter optimization, data-driven, XGBoost algorithm, machine learning

中图分类号: