综合智慧能源

• •    

高危N-k故障的高危断面辨识与保护配置

黄子书, 蔡晔   

  1. 长沙理工大学, 湖南 中国
  • 收稿日期:2024-12-05 修回日期:2025-01-11
  • 基金资助:
    国家自然科学基金项目(52277076); 长沙市杰出创新人才项目(kq2306011); 湖南省研究生科研创新项目资助(CX20240783)

Identification and protection configuration of critical sections in high-risk N-k faults

  1. , , China
  • Received:2024-12-05 Revised:2025-01-11
  • Supported by:
    National Natural Science Foundation(52277076); Outstanding innovation talent project of Changsha(kq2306011); Postgraduate Scientific Research Innovation Project of Hunan Province(CX20240783)

摘要: 快速识别由高危N-k故障引发的连锁故障中的高危断面,并对其进行重点保护,对预防大停电事故具有重要作用。针对N-k连锁故障源发场景多样、故障传播路径复杂、保护策略实施对象难以界定等问题,本文提出一种结合极限梯度提升(extreme gradient boosting , XGBoost)与贝叶斯超参数优化的高危断面辨识与保护配置模型。首先,搭建高危N-k故障集,随机模拟0.1至10负载率下的连锁故障,构建以线路负载率为输入、剩余负荷为目标的连锁故障数据集。其次,使用贝叶斯优化算法调整XGBoost模型超参数,选择最优参数组合。最后,辨识高危N-k故障场景下的保护资源配置策略。在IEEE39节点系统上的仿真结果表明,对于高危N-k故障集中88%的场景,通过调整高危断面三条线路的潮流承载能力,系统剩余负荷可维持在80%以上。

关键词: 连锁故障, 断面辨识, 贝叶斯超参数优化, 数据驱动, XGBoost算法, 机器学习

Abstract: Rapid identification and protection of critical sections in cascading failures caused by high-risk N-k contingencies are vital for preventing large-scale blackouts. To address the issues arising from the diversity of N-k cascading fault source scenarios, the complexity of fault propagation paths, and the difficulty in defining protection strategy targets, this study proposes a critical section identification and protection model that combines Extreme Gradient Boosting (XGBoost) with Bayesian hyperparameter optimization. First a high-risk N-k fault set is constructed and the propagation of cascading faults under load rates ranging from 0.1 to 10 is simulated randomly. A dataset is generated with line load rates as inputs and residual load as the output. Subsequently, Bayesian optimization is applied to fine-tunes the hyperparameters of XGBoost model. Finlly, protection resource configuration strategies for high-risk N-k fault scenarios are identified. Simulations on the IEEE 39-bus system demonstrate that for 88% of scenarios, adjusting the power flow capacity of three critical lines can maintain residual load above 80%.

Key words: Cascading faults, Section identification, Bayesian hyperparameter optimization, Data-driven, XGBoost algorithm, Machine learning