[1] |
邹风华, 朱星阳, 殷俊平, 等. “双碳” 目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40.
doi: 10.3969/j.issn.2097-0706.2024.08.005
|
|
ZOU Fenghua, ZHU Xingyang, YIN Junping, et al. Development trend analysis on building energy systems under "dual carbon" target[J]. Integrated Intelligent Energy, 2024, 46(8): 36-40.
doi: 10.3969/j.issn.2097-0706.2024.08.005
|
[2] |
DING C, KE J, LEVINE M, et al. Potential of artificial intelligence in reducing energy and carbon emissions of commercial buildings at scale[J]. Nature Communications, 2024, 15(1): 5916.
doi: 10.1038/s41467-024-50088-4
pmid: 39004671
|
[3] |
RAFIQ H, MANANDHAR P, RODRIGUEZ-UBINAS E, et al. A review of current methods and challenges of advanced deep learning-based non-intrusive load monitoring (NILM) in residential context[J]. Energy and Buildings, 2024, 305: 113890.
|
[4] |
ANGELIS G F, TIMPLALEXIS C, KRINIDIS S, et al. NILM applications: Literature review of learning approaches, recent developments and challenges[J]. Energy and Buildings, 2022, 261: 111951.
|
[5] |
李亦非, 王芳, 张雅静, 等. 考虑时空耦合特性的非侵入式综合能源系统多能设备负荷辨识方法[J]. 科学技术与工程, 2024, 24(26): 11283-11293.
|
|
LI Yifei, WANG Fang, ZHANG Yajing, et al. Non-invasive comprehensive energy system multi energy equipment load identification method considering spatiotemporal coupling characteristics[J]. Science Technology and Engineering, 2024, 24(26): 11283-11293.
|
[6] |
龚玉婕. 基于非侵入式负荷分解的办公建筑用电行为研究[D]. 广州: 广东财经大学, 2022.
|
|
GONG Yujie. Research on electricity consumption behavior of office buildings based on non-intrusive load decomposition[D]. Guangzhou: Guangdong University of Finance & Economics, 2022.
|
[7] |
樊颜搏, 熊亚选, 李想, 等. 基于遗传算法的建筑用能多目标优化应用进展[J]. 综合智慧能源, 2024, 46(9): 69-85.
doi: 10.3969/j.issn.2097-0706.2024.09.009
|
|
FAN Yanbo, XIONG Yaxuan, LI Xiang, et al. Advancement in multi-objective optimization for building energy use based on genetic algorithms[J]. Integrated Intelligent Energy, 2024, 46(9): 69-85.
doi: 10.3969/j.issn.2097-0706.2024.09.009
|
[8] |
杨秀, 吴吉海, 孙改平, 等. 基于深度学习和迁移学习的公共楼宇非侵入式负荷分解[J]. 电网技术, 2022, 46(3): 1160-1169.
|
|
YANG Xiu, WU Jihai, SUN Gaiping, et al. Non-intrusive load decomposition of public buildings based on deep learning and transfer learning[J]. Power System Technology, 2022, 46(3): 1160-1169.
|
[9] |
孙健, 张云帆, 蔡潇龙, 等. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19.
doi: 10.3969/j.issn.2097-0706.2024.03.002
|
|
SUN Jian, ZHANG Yunfan, CAI Xiaolong, et al. Optimal scheduling of HVAC systems based on predicted loads[J]. Integrated Intelligent Energy, 2024, 46(3): 12-19.
doi: 10.3969/j.issn.2097-0706.2024.03.002
|
[10] |
NORFORD L K, LEEB S B. Non-intrusive electrical load monitoring in commercial buildings based on steady-state and transient load-detection algorithms[J]. Energy and Buildings, 1996, 24(1): 51-64.
|
[11] |
AKBAR M K, AMAYRI M, BOUGUILA N. A novel non-intrusive load monitoring technique using semi-supervised deep learning framework for smart grid[J]. Building Simulation, 2024, 17(3): 441-457.
|
[12] |
SILVA NOLASCO LDA, LAZZARETTI A E, MULINARI B M. DeepDFML-NILM: A new CNN-based architecture for detection,feature extraction and multi-label classification in NILM signals[J]. IEEE Sensors Journal, 2022, 22(1): 501-509.
|
[13] |
HUANG L, CHEN S J, LING Z X, et al. Non-invasive load identification based on LSTM-BP neural network[J]. Energy Reports, 2021, 7: 485-492.
|
[14] |
ZHOU X X, FENG J R, LI Y. Non-intrusive load decomposition based on CNN-LSTM hybrid deep learning model[J]. Energy Reports, 2021, 7: 5762-5771.
|
[15] |
YUAN J, JIN R, WANG L D, et al. A Nonintrusive load identification method based on dualbranch attention GRU fusion network[J]. IEEE Transactions on Instrumentation and Measurement, 2024,73:1-10.
|
[16] |
CHEN T, QIN H Y, LI X S, et al. A non-intrusive load monitoring method based on feature fusion and SE-ResNet[J]. Electronics, 2023, 12(8): 1909.
|
[17] |
DJORDJEVIC S, SIMIC M. Nonintrusive identification and type recognition of household appliances based on the harmonic analysis of the steady-state current[J]. Electrical Engineering, 2023, 105(5): 3319-3328.
|
[18] |
MEIER A, CAUTLEY D. Practical limits to the use of non-intrusive load monitoring in commercial buildings[J]. Energy and Buildings, 2021, 251: 111308.
|
[19] |
裘星, 尹仕红, 张之涵, 等. 基于V-I轨迹与高次谐波特征的非侵入式负荷识别方法[J]. 电力工程技术, 2021, 40(6): 34-42.
|
|
QIU Xing, YIN Shihong, ZHANG Zhihan, et al. Non-intrusive load identification method based on V-I trajectory and high-order harmonic feature[J]. Electric Power Engineering Technology, 2021, 40(6): 34-42.
|
[20] |
石鑫, 刘奇央, 高峰. 深度神经网络在新型能源系统中的应用及展望[J]. 综合智慧能源, 2025, 47(2): 88-101.
doi: 10.3969/j.issn.2097-0706.2025.02.009
|
|
SHI Xin, LIU Qiyang, GAO Feng. Application and prospects of deep neural network in new energy systems[J]. Integrated Intelligent Energy, 2025, 47(2): 88-101.
doi: 10.3969/j.issn.2097-0706.2025.02.009
|
[21] |
ZAERI N, ASHOURI A, GUNAY H B, et al. Disaggregation of electricity and heating consumption in commercial buildings with building automation system data[J]. Energy and Buildings, 2022, 258: 111791.
|
[22] |
刘航, 刘春阳, 赵浩然, 等. 基于深度学习的公共楼宇电-气负荷非侵入式分解[J]. 电网技术, 2023, 47(3): 1188-1197.
|
|
LIU Hang, LIU Chunyang, ZHAO Haoran, et al. Non-intrusive disaggregation of electricity and gas load in public buildings based on deep learning[J]. Power System Technology, 2023, 47(3): 1188-1197.
|
[23] |
刘一宁, 陈柏安, 杜鹏程, 等. 基于MDLOF-iForest和M-KNN-Slope的公共建筑负荷异常数据识别与修复[J]. 综合智慧能源:1-11(2025-03-05)[2025-03-10]. http://kns.cnki.net/kcms/detail/41.1461.tk.20250303.0944.002.html.
|
|
LIU Yining, CHEN Baian, DU Pengcheng, et al. Detection and repair of abnormal load data of public buildings based on MDLOF-iForest and M-KNN-Slope[J]. Integrated Intelligent Energy,1-11(2025-03-05)[2025-03-10]. http://kns.cnki.net/kcms/detail/41.1461.tk.20250303.0944.002.html.
|
[24] |
MULINARI B M, LINHARES R R, DE CAMPOS D P, et al. A new set of steady-state and transient features for power signature analysis based on V-I trajectory[C]//Proceedings of 2019 IEEE PES Innovative Smart Grid Technologies Conference—Latin America (ISGT Latin America),IEEE, 2019: 1-6.
|
[25] |
DUC M L, BILIK P, MARTINEK R. Harmonics signal feature extraction techniques: A review[J]. Mathematics, 2023, 11(8): 1877.
|