综合智慧能源 ›› 2025, Vol. 47 ›› Issue (3): 23-31.doi: 10.3969/j.issn.2097-0706.2025.03.003

• 负荷资源优化控制 • 上一篇    下一篇

基于MSCNN-BiGRU-MLP模型的公共建筑非侵入式负荷辨识

杨丽洁1(), 邓振宇1, 陈作双1, 黄超2, 江美慧1,3(), 朱虹谕1,3,*()   

  1. 1.广西大学 电气工程学院,南宁 530004
    2.北京科技大学 计算机与通信工程学院,北京 100083
    3.内蒙古工业大学 新能源学院,内蒙古 鄂尔多斯 017010
  • 收稿日期:2024-12-31 修回日期:2025-03-12 接受日期:2025-03-25 出版日期:2025-03-25
  • 通讯作者: *朱虹谕(1996),女,讲师,博士,从事多能耦合分布式能源系统优化运行与协同调控、需求侧响应等方面的研究,hongyuzhu@imut.edu.cn
  • 作者简介:杨丽洁(2001),女,硕士生,从事智慧能源系统方面的研究,yanglijie0721@163.com
    江美慧(1994),女,讲师,博士,从事综合能源、风光储一体化技术等方面的研究,meihuijiang@yeah.net
  • 基金资助:
    国家自然科学基金项目(62372039)

Non-intrusive load identification for public buildings based on MSCNN-BiGRU-MLP model

YANG Lijie1(), DENG Zhenyu1, CHEN Zuoshuang1, HUANG Chao2, JIANG Meihui1,3(), ZHU Hongyu1,3,*()   

  1. 1. School of Electrical Engineering, Guangxi University, Nanning 530004, China
    2. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
    3. School of Renewable Energy, Inner Mongolia University of Technology, Ordos 017010, China
  • Received:2024-12-31 Revised:2025-03-12 Accepted:2025-03-25 Published:2025-03-25
  • Supported by:
    National Natural Science Foundation of China(62372039)

摘要: 在公共建筑能源管理中,负荷辨识对优化能源利用、降低能耗具有重要意义。传统负荷监测主要为侵入式,依赖硬件设备或负荷的宏观特征,难以满足现代智能建筑和智慧城市的精细化管理需求。为解决公共建筑负载多样化和不确定性带来的挑战,提出了一种基于多尺度卷积神经网络(MSCNN)、双向门控循环单元(BiGRU)及多层感知机(MLP)的非侵入式负荷辨识方法。模型通过融合负荷的电压-电流(V-I)轨迹特征、功率特征及谐波特征,实现对公共建筑典型插座类负荷的分类与辨识。用MSCNN提取负荷的V-I轨迹特征,捕捉设备运行期间稳定且具有“指纹”特征的信息;利用BiGRU对功率特征及谐波特征进行时间序列建模,挖掘负荷信号的动态特性;通过MLP对融合后的特征进行负荷分类。试验以多种常见公共建筑负荷为研究对象,验证了所提模型的有效性。结果表明,提出的MSCNN-BiGRU-MLP模型负荷辨识准确率达0.917 1,能够准确识别负荷种类,并在特征动态变化与高频干扰的条件下保持较高的鲁棒性。

关键词: 非侵入式负荷辨识, 多尺度卷积神经网络, 双向门控循环单元, 多层感知机, 公共建筑, 电压-电流(V-I) 轨迹特征, 能源管理

Abstract:

In the energy management of public buildings, load identification plays a critical role in optimizing energy utilization and reducing energy consumption. Traditional load monitoring methods are primarily intrusive, relying on hardware equipment or macro-level load characteristics, which fail to meet the refined management requirements of modern intelligent buildings and smart cities. To address the challenges posed by the diversity and uncertainty of public building loads, a non-intrusive load identification method was proposed based on multi-scale convolutional neural network (MSCNN), bidirectional gated recurrent unit(BiGRU), and multilayer perceptron(MLP). The model integrated voltage-current(V-I) trajectory features, power features, and harmonic features to achieve classification and identification of typical socket-based loads in public buildings. MSCNN was employed to extract V-I trajectory features, capturing stable and "fingerprint-like" characteristics of equipment during operation. BiGRU was utilized for time-series modeling of power and harmonic features, revealing the dynamic characteristics of load signals. MLP was then applied to classify the fused features. Experiments on various common public building loads validated the effectiveness of the proposed model. The results showed that the MSCNN-BiGRU-MLP model achieved a load identification accuracy of 0.917 1, accurately identifying load types and maintaining high robustness under dynamic feature changes and high-frequency noise conditions.

Key words: non-intrusive load identification, multi-scale convolutional neural network, bidirectional gated recurrent unit, multilayer perceptron, public buildings, voltage-current(V-I) trajectory features, energy management

中图分类号: