[1] |
中国电力企业联合会. 2023年度全国电力供需形势分析预测报告[R]. 北京: 中国电力企业联合会, 2023.
|
[2] |
屈博, 刘畅, 李德智, 等. “碳中和”目标下的电能替代发展战略研究[J]. 电力需求侧管理, 2021, 23(2):1-3,9.
|
|
QU Bo, LIU Chang, LI Dezhi, et al. Research on the development strategy of electricity substitution under the target of "carbon neutral"[J]. Power Demand Side Management, 2021, 23(2): 1-3,9.
|
[3] |
李作锋, 陈振宇. 江苏电力需求响应的探索和实践[J]. 电力需求侧管理, 2018, 20(1):4-8.
|
|
LI Zuofeng, CHEN Zhenyu. The exploration and practice of Jiansu power demand response[J]. Power Demand Side Management, 2018, 20(1):4-8.
|
[4] |
张雪纯, 高广玲, 张智晟, 等. 基于需求响应的建筑楼宇综合能源系统调度优化研究[J]. 电力需求侧管理, 2019, 21(4):28-34.
|
|
ZHANG Xuechun, GAO Guangling, ZHANG Zhisheng, et al. Optimal scheduling of building integrated energy system based on demand response[J]. Power Demand Side Management, 2019, 21(4):28-34.
|
[5] |
熊真真. 基于决策树的上海商业建筑虚拟电厂执行力分析[J]. 综合智慧能源, 2023, 45(6): 66-72.
doi: 10.3969/j.issn.2097-0706.2023.06.009
|
|
XIONG Zhenzhen. Analysis on execution of VPPs for commercial buildings in Shanghai based on decision tree[J]. Integrated Intelligent Energy, 2023, 45(6): 66-72.
doi: 10.3969/j.issn.2097-0706.2023.06.009
|
[6] |
IEA. Demand Response[EB/OL]. (2023-07-11)[2024-04-05]. https://www.iea.org/energy-system/energy-efficiency-and-demand/demand-response.
|
[7] |
山东省能源局. 关于印发2021年全省电力需求响应工作方案的通知[EB/OL]. (2021-07-07)[2024-04-05]. https://www.hangzhou.gov.cn/art/2021/7/7/art_1229063383_1731252.html.
|
[8] |
QIANG Z, WANG S W, XU X H, et al. A grey-box model of next-day building thermal load prediction for energy-efficient control[J]. International Journal of Energy Research, 2010, 32(15):1418-1431.
|
[9] |
JUNKER R G, AZAR A G, LOPES R A, et al. Characterizing the energy flexibility of buildings and districts[J]. Applied Energy, 2018, 225: 175-182.
|
[10] |
KLEIN K, HERKEL S, H-MHENNING, et al. Load shifting using the heating and cooling system of an office building: Quantitative potential evaluation for different flexibility and storage options[J]. Applied Energy, 2017, 203: 917-937.
|
[11] |
ZHEN C, NIU J D, TIAN Z. Research on model calibration method of chiller plants based on error reverse correction with limited data[J]. Energies, 2023, 16:918.
|
[12] |
PALLONETTO F, DE ROSA M, FINN D P. Impact of intelligent control algorithms on demand response flexibility and thermal comfort in a smart grid ready residential building[J]. Smart Energy, 2021, 2: 100017.
|
[13] |
LUO N, LANGEVIN J, CHANDRA-PUTRA H, et al. Quantifying the effect of multiple load flexibility strategies on commercial building electricity demand and services via surrogate modeling[J]. Applied Energy, 2022, 309: 118372
|
[14] |
YU X R, ERGAN S. Estimating power demand shaving capacity of buildings on an urban scale using extracted demand response profiles through machine learning models[J]. Applied Energy, 2022, 310:118579.
|
[15] |
ZHU J, NIU J D, TIAN Z, et al. Rapid quantification of demand response potential of building HAVC system via data-driven model[J]. Applied Energy, 2022, 325: 119796.
|
[16] |
TANG H, WANG S W. A model-based predictive dispatch strategy for unlocking and optimizing the building energy flexibilities of multiple resources in electricity markets of multiple services[J]. Applied Energy, 2022, 305: 117889.
|
[17] |
浙江省发展和改革委员会. 省能源局关于开展2021年度电力需求响应工作的通知[EB/OL]. (2021-06-01)[2024-04-05]. https://fzggw.zj.gov.cn/art/2021/6/8/art_1229629046_4906648.html.
|
[18] |
天津市工业和信息化局. 市工业和信息化局关于印发2022年电力需求响应实施细则的通知[EB/OL].(2022-01-24)[2024-04-05]. https://gyxxh.tj.gov.cn/ZWGK4147/ZCWJ6355/wjwj/202201/t20220124_5787811.html.
|
[19] |
贵州省人民政府. 贵州省能源局关于因覅贵州省电力需求响应实施方案(试行)的通知[EB/OL].(2023-07-10)[2024-04-05]. https://www.guizhou.gov.cn/zwgk/zdlygk/jjgzlfz/nyzy/dlgl/202307/t20230711_80838290.html.
|
[20] |
云南省能源局. 云南省能源局关于印发2023年云南省电力需求响应方案的通知[EB/OL]. (2023-04-27)[2024-04-05]. https://nyj.yn.gov.cn/xwdt/gzdt/202304/t20230427_1423367.html.
|
[21] |
段秦刚, 陈永椿, 王一, 等. 电力现货市场下激励型需求响应交易机制及出清模型[J]. 电力建设, 2021, 42(6):145-156.
doi: 10.12204/j.issn.1000-7229.2021.06.015
|
|
DUAN Qingang, CHEN Yongchun, WANG Yi, et al. Trading mechanism and clearing model of incentive demand response in electricity spot market[J]. Electric Power Construction, 2021, 42(6): 145-156.
doi: 10.12204/j.issn.1000-7229.2021.06.015
|
[22] |
CHEN Y B, CHEN Z, XU P, et al. Quantification of electricity flexibility in demand response: Office building case study[J]. Energy, 2019, 188: 116054.
|
[23] |
瞿燕, 宋德萱. 基于统计特征分析的上海办公建筑典型模型建立[J]. 建筑节能, 2022, 50(10): 23-30,51.
|
|
QU Yan, SONG Dexuan. Prototype establishment based on statistical characterization of office buildings in Shanghai[J]. Journal of BEE, 2022, 50(10): 20-30,51.
|
[24] |
孙健, 张云帆, 蔡潇龙, 等. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19.
doi: 10.3969/j.issn.2097-0706.2024.03.002
|
|
SUN Jian, ZHANG Yunfan, CAI Xiaolong, et al. Optimal scheduling of HVAC systems based on predicted loads[J]. Integrated Intelligent Energy, 2024, 46(3): 12-19.
doi: 10.3969/j.issn.2097-0706.2024.03.002
|
[25] |
民用建筑热工设计规范:GB 50176—2016[S]. 北京: 中国建筑工业出版社, 2016.
|
[26] |
公共建筑节能设计标准:GB 50189—2015[S]. 北京: 中国建筑工业出版社, 2015.
|
[27] |
民用建筑供暖通风与空气调节设计规范:GB 50736—2012[S]. 北京: 中国建筑工业出版社, 2012.
|
[28] |
D-KBUI, NGUYEN T N, GHAZLAN A, et al. Enhancing building energy efficiency by adaptive façade: A computational optimization approach[J]. Applied Energy, 2020, 265.
|
[29] |
姚巍. 基于数据挖掘的中央空调能耗预测与控制优化研究[D]. 成都: 电子科技大学, 2022.
|
|
YAO Wei. Research on energy consumption prediction and control optimization of central air conditioning based on data mining[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
|
[30] |
HECHT N. Theory of the backpropagation neural network[C]// International 1989 Joint Conference on Neural Networks, 1989:593-605.
|
[31] |
徐聪, 胡永锋, 张爱平, 等. 基于特征筛选的综合能源系统多元负荷日前-日内预测[J]. 综合智慧能源, 2024, 46(3): 45-53.
doi: 10.3969/j.issn.2097-0706.2024.03.006
|
|
XU Cong, HU Yongfeng, ZHANG Aiping, et al. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening[J]. Integrated Intelligent Energy, 2024, 46(3): 45-53.
doi: 10.3969/j.issn.2097-0706.2024.03.006
|