综合智慧能源 ›› 2024, Vol. 46 ›› Issue (8): 12-19.doi: 10.3969/j.issn.2097-0706.2024.08.002
收稿日期:
2023-11-28
修回日期:
2024-02-24
出版日期:
2024-08-25
通讯作者:
*崔金栋(1980),男,教授,博士,从事电网数字化等方面的研究,jindong1106@126.com。作者简介:
李菲菲(1982),女,副教授,博士,从事能源经济、碳金融方面的研究,292707810@qq.com。
基金资助:
LI Feifei(), XU Huiwei, CUI Jindong(
)
Received:
2023-11-28
Revised:
2024-02-24
Published:
2024-08-25
Supported by:
摘要:
石化行业作为典型的高碳排产业,研究其碳排放规律及影响有助于我国“双碳”目标的实现。以吉林省2002—2021年石化行业中5个子行业的原煤、洗精煤、焦炭、汽油、柴油、原油等9类碳排放源数据为基础,研究吉林省石化行业碳排放的时间演变特征及碳排放结构。采用扩展的随机性环境影响评估(STIRPAT)模型以及岭回归参数估计方法,选取经济增加值等6个指标,深入探讨各因素对吉林省石化行业碳排放量的作用机制及影响。根据实证分析结果,为推进吉林省石化行业低碳发展,促进石化产业碳减排,提出3个建议:提升能源效率,改善能源消费结构;优化投资项目,推动低碳项目发展;采取循环经济,进行环境影响评估。
中图分类号:
李菲菲, 徐绘薇, 崔金栋. 基于STIRPAT模型的吉林省石化行业碳排放影响因素研究[J]. 综合智慧能源, 2024, 46(8): 12-19.
LI Feifei, XU Huiwei, CUI Jindong. Research on the influencing factors of carbon emissions from petrochemical industry in Jilin Province based on the STIRPAT model[J]. Integrated Intelligent Energy, 2024, 46(8): 12-19.
表1
变量数据
年份 | C/万t | AV/亿元 | IE | R | F/亿元 | ICI/(万元·t-1) | L/(万元·人-1) |
---|---|---|---|---|---|---|---|
2002 | 1 135.98 | 28.80 | 69.11 | 0.02 | 10.60 | 0.01 | 2.98 |
2003 | 1 362.78 | 6.59 | 306.02 | 0.02 | 15.86 | 0.01 | 3.15 |
2004 | 1 487.29 | 75.01 | 27.41 | 0.02 | 46.15 | 0.03 | 3.23 |
2005 | 1 273.19 | 84.69 | 24.74 | 0.03 | 60.34 | 0.05 | 3.54 |
2006 | 1 327.98 | 84.58 | 25.66 | 0.03 | 75.65 | 0.06 | 3.81 |
2007 | 1 295.69 | 350.68 | 6.13 | 0.03 | 100.65 | 0.08 | 5.16 |
2008 | 1 251.97 | 219.71 | 9.35 | 0.03 | 127.84 | 0.10 | 5.86 |
2009 | 1 246.10 | 230.24 | 8.95 | 0.03 | 148.94 | 0.12 | 6.51 |
2010 | 1 356.73 | 324.58 | 6.96 | 0.03 | 170.42 | 0.13 | 7.72 |
2011 | 1 585.90 | 346.38 | 7.54 | 0.03 | 214.00 | 0.13 | 8.00 |
2012 | 1 436.63 | 273.67 | 8.72 | 0.04 | 253.34 | 0.18 | 9.41 |
2013 | 1 349.47 | 203.08 | 11.23 | 0.05 | 303.21 | 0.22 | 10.68 |
2014 | 1 417.13 | 212.27 | 11.20 | 0.04 | 330.10 | 0.23 | 12.08 |
2015 | 1 245.27 | 25.69 | 82.52 | 0.04 | 328.87 | 0.26 | 12.82 |
2016 | 2 161.83 | 57.51 | 71.82 | 0.02 | 320.98 | 0.15 | 13.79 |
2017 | 2 227.61 | 87.03 | 49.34 | 0.02 | 316.70 | 0.14 | 14.96 |
2018 | 1 785.93 | 51.92 | 71.23 | 0.02 | 337.96 | 0.19 | 16.02 |
2019 | 1 129.54 | 60.65 | 41.73 | 0.03 | 355.11 | 0.31 | 17.24 |
2020 | 1 132.05 | 153.38 | 12.85 | 0.04 | 341.01 | 0.30 | 19.03 |
2021 | 2 075.58 | 338.30 | 12.34 | 0.02 | 388.35 | 0.19 | 21.19 |
表3
共线性统计结果
项目 | 未标准化系数 | 标准化系数 | t值 | 显著性 | 共线性统计 | ||
---|---|---|---|---|---|---|---|
B | 标准错误 | β | 容差 | VIF值 | |||
常量 | 6.673×10-5 | 0 | 0.814 | 0.430 | |||
lnAV | 4.469×10-5 | 0 | 0.000 | 1.484 | 0.162 | 0.002 | 407.525 |
lnIE | 4.026×10-5 | 0 | 0.000 | 1.331 | 0.206 | 0.002 | 421.436 |
lnR | -7.052×10-6 | 0 | 0.000 | -0.521 | 0.611 | 0.163 | 6.135 |
lnF | 1.000 | 0 | 5.074 | 40 644.538 | 0.000 | 0.004 | 269.864 |
lnICI | -1.000 | 0 | -4.793 | -39 760.413 | 0.000 | 0.004 | 251.707 |
lnL | 1.391×10-6 | 0 | 0.000 | 0.159 | 0.876 | 0.077 | 13.059 |
表4
回归分析结果
项目 | 非标准化系数 | 标准化系数 | t | p | VIF值 | |
---|---|---|---|---|---|---|
B | 标准错误 | β | ||||
常数 | 3.175 | 0.467 | - | 6.798 | 0.000* | |
lnAV | 0.151 | 0.035 | 0.767 | 4.319 | 0.001* | 2.802 |
lnIE | 0.135 | 0.035 | 0.696 | 3.844 | 0.002* | 2.915 |
lnR | -0.342 | 0.095 | -0.475 | -3.618 | 0.003* | 1.534 |
lnF | 0.251 | 0.048 | 1.273 | 5.225 | 0.000* | 5.273 |
lnICI | -0.208 | 0.052 | -0.996 | -3.986 | 0.002* | 5.542 |
lnL | 0.009 | 0.077 | 0.027 | 0.112 | 0.913 | 5.231 |
R2 | 0.854 | |||||
调整R2 | 0.786 | |||||
F,p | F(6,13)=12.634, p=0.000 |
[1] | 吴彤, 张兴宇, 程星星, 等. 基于STIRPAT模型的临沂市工业碳排放分析及预测[J]. 华电技术, 2021, 43(6):47-54. |
WU Tong, ZHANG Xingyu, CHENG Xingxing, et al. Analysis and prediction of industrial carbon emissions in Linyi City based on STIRPAT model[J]. Huadian Technology, 2021, 43 (6): 47-54. | |
[2] | 姚明秀, 王淼薇, 雷一东. 基于STIRPAT模型的上海市碳达峰预测研究[J]. 复旦学报(自然科学版), 2023, 62(2):226-237. |
YAO Mingxiu, WANG Miaowei, LEI Yidong. Research on Shanghai carbon peak forecast based on STIRPAT model[J]. Journal of Fudan University (Natural Science Edition), 2023, 62 (2): 226-237. | |
[3] | 任伟, 杨嘉宁, 郭晓梦. 基于STIRPAT模型的河北省碳达峰情景预测研究[J]. 华北理工大学学报(社会科学版), 2023, 23(4):34-41. |
REN Wei, YANG Jianing, GUO Xiaomeng. Prediction of carbon peak scenarios in Hebei Province based on STIRPAT model[J]. Journal of North China University of Technology (Social Sciences Edition), 2023, 23 (4): 34-41. | |
[4] | 夏磊, 朱峰, 刘慧, 等. 广东省石化企业碳排放核算及配额分配研究[J]. 环境保护与循环经济, 2023, 43(5):90-93. |
XIA Lei, ZHU Feng, LIU Hui, et al. Research on carbon emission accounting and quota allocation of petrochemical enterprises in Guangdong Province[J]. Environmental Protection and Circular Economy, 2023, 43 (5): 90-93. | |
[5] | 王莉丽, 丛颖特. 石化行业碳排放环境影响评价研究[J]. 皮革制作与环保科技, 2023, 4(12):70-72. |
WANG Lili, CONG Yingte. Environmental impact assessment of carbon emission in petrochemical industry[J]. Leather Manufacturing and Environmental Protection Technology, 2023, 4 (12): 70-72. | |
[6] | 邓建福. 广东省石化行业碳排放环境影响评价分析[J]. 绿色科技, 2022, 24(16):214-218. |
DENG Jianfu. Analysis on environmental impact assessment of carbon emission from petrochemical industry in Guangdong Province[J]. Green Technology, 2022, 24 (16): 214-218. | |
[7] | 夏磊, 朱峰, 刘慧, 等. 广东省石化企业碳排放核算及配额分配研究[J]. 环境保护与循环经济, 2023, 43(5):90-93. |
XIA Lei, ZHU Feng, LIU Hui, et al. Research on carbon emission accounting and quota allocation of petrochemical enterprises in Guangdong Province[J]. Environmental Protection and Circular Economy, 2023, 43 (5): 90-93. | |
[8] |
何沭纬, 韩颖慧, 徐文斌, 等. 不同能源策略下北京市私有机动车辆CO2排放系统仿真模拟[J]. 综合智慧能源, 2023, 45(8): 26-35.
doi: 10.3969/j.issn.2097-0706.2023.08.004 |
HE Shuwei, HAN Yinghui, XU Wenbin, et al. Simulation for CO2 emissions from private vehicles in Beijing under different energy strategies[J]. Integrated Intelligent Energy, 2023, 45(8): 26-35.
doi: 10.3969/j.issn.2097-0706.2023.08.004 |
|
[9] | 关伟, 李书妹, 许淑婷. 东北三省碳排放量及其效率时空演变分析[J]. 辽宁师范大学学报(自然科学版), 2023, 46(1):102-111. |
GUAN Wei, LI Shumei, XU Shuting. Spatial-temporal evolution of carbon dioxide emissions and its efficiency in three northeastern provinces[J]. Journal of Liaoning Normal University (Natural Science Edition), 2023, 46 (1): 102-111. | |
[10] | 孙康, 解月, 贠鸿琬, 等. 河南省种植业碳排放动态演化分析[J]. 安徽农业科学, 2023, 51(1):46-49,54. |
SUN Kang, XIE Yue, YUN Hongwan, et al. Analysis on the dynamic evolution of carbon emissions from planting industry in Henan Province[J]. Anhui Agricultural Science, 2023, 51 (1): 46-49,54. | |
[11] | 霍礼鑫, 张雨帆, 柯佑鹏, 等. 农业碳排放时序特征及达峰分析——以海南省18市县为例[J]. 农业与技术, 2023, 43(20):103-107. |
HUO Lixin, ZHANG Yufan, KE Youpeng, et al. Temporal characteristics and peak analysis of agricultural carbon emissions: A case study of 18 cities and counties in Hainan Province[J]. Agriculture and Technology, 2023, 43 (20): 103-107. | |
[12] | 李娜, 石晶. 中国农业碳排放测度及时空演变分析[J]. 河北环境工程学院学报, 2022, 32(6):9-12,26. |
LI Na, SHI Jing. Analysis of the measurement and spatial-temporal evolution of agricultural carbon emissions in China[J]. Journal of Hebei University of Environmental Engineering, 2022, 32 (6): 9-12,26. | |
[13] |
徐英启, 程钰, 王晶晶, 等. 中国低碳试点城市碳排放效率时空演变与影响因素[J]. 自然资源学报, 2022, 37(5):1261-1276.
doi: 10.31497/zrzyxb.20220511 |
XU Yingqi, CHENG Yu, WANG Jingjing, et al. Spatio-temporal evolution and influencing factors of carbon emission efficiency in low carbon city of China[J]. Journal of Natural Resources, 2022, 37 (5): 1261-1276.
doi: 10.31497/zrzyxb.20220511 |
|
[14] | WANG R, CI H, ZHANG T, et al. Spatial-temporal evolution characteristics of industrial carbon emissions in China's most developed provinces from 1998-2013: The case of Guangdong[J]. Energies, 2023, 16(5):2249. |
[15] | 徐卫赣. 基于Super-PEBM模型的中国省域物流业碳排放效率测度研究[J]. 经济研究导刊, 2022(13):38-42. |
XU Weigan. Efficiency measurement of China's regional carbon emission efficiency in logistics industry:A method based on Super-PEBM model[J]. Economic Research Guide, 2022 (13): 38-42. | |
[16] | 吴金容. 碳排放的时空演变、空间溢出效应及影响因素——基于中国中部79个城市的实证研究[J]. 中国集体经济, 2023(36):104-107. |
WU Jinrong. The spatiotemporal evolution, spatial spillover effects, and influencing factors of carbon emissions: An empirical study based on 79 cities in central China[J]. China Collective Economy, 2023(36):104-107. | |
[17] |
王盛, 谈健, 马亚辉, 等. 多重不确定性下基于LMDI的城市工业碳排放量影响因素分析及预测:以苏州市为例[J]. 综合智慧能源, 2022, 44(2): 1-7.
doi: 10.3969/j.issn.2097-0706.2022.02.001 |
WANG Sheng, TAN Jian, MA Yahui, et al. Impact factor analysis and forecasting of the carbon emissions from industries based on LMDI method under multiple uncertainties: The case of Suzhou City[J]. Integrated Intelligent Energy, 2022, 44(2): 1-7.
doi: 10.3969/j.issn.2097-0706.2022.02.001 |
|
[18] | JEONG K, KIM S Y. LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector[J]. Energy Policy, 2013,62:1245-1253. |
[19] | CHEKOURI S M, CHIBI A, BENBOUZIANE M. Examining the driving factors of CO2 emissions using the STIRPAT model: The case of Algeria[J]. International Journal of Sustainable Energy, 2020, 39(10):1-14. |
[20] | 汪中华, 于孟君. 中国石化行业二氧化碳排放的影响因素分解——基于广义迪氏指数分解法[J]. 科技管理研究, 2019, 39(24):268-274. |
WANG Zhonghua, YU Mengjun. Factor decomposition of affecting carbon dioxide emissions in China's petrochemical industry:Based on generalized Divisia index method[J]. Science and Technology Management Research, 2019, 39 (24): 268-274. | |
[21] | 周磊, 郭梦姣. 河北省城市碳排放灰色关联度分析及情景预测研究[J/OL]. 河北科技大学学报(社会科学版):1-13(2023-07-20)[2023-11-26]. http://kns.cnki.net/kcms/detail/13.1303.G4.20230719.1452.008.html. |
ZHOU Lei, GUO Mengjiao. Gray relational analysis and scenario prediction of carbon emissions in Hebei Province[J/OL]. Journal of Hebei University of Science and Technology (Social Science Edition): 1-13(2023-07-20)[2023-11-26]. http://kns.cnki.net/kcms/detail/13.1303.G4.20230719.1452.008.html. | |
[22] | 黎彬, 黄俊梅. 基于STIRPAT模型的闵行区工业能源碳排放分析[J]. 环境监控与预警, 2023, 15(5):106-111. |
LI Bin, HUANG Junmei. Analysis of industrial energy carbon emission of Minhang district based on STIRPAT model[J]. Environmental Monitoring and Early Warning, 2023, 15 (5): 106-111. | |
[23] | 赵丽霞, 魏梦迪. 内蒙古地区煤基化工产业碳排放效率及影响因素分析[J/OL]. 内蒙古农业大学学报(社会科学版):1-8(2023-09-28)[2023-11-26]. http://kns.cnki.net/kcms/detail/15.1207.G.20230927.1716.006.html. |
ZHAO Lixia, WEI Mengdi. Analysis of carbon emission efficiency and influencing factors of coal-based chemical industry in Inner Mongolia[J/OL]. Journal of Inner Mongolia Agricultural University (Social Science Edition):1-8(2023-09-28)[2023-11-26]. http://kns.cnki.net/kcms/detail/15.1207.G.20230927.1716.006.html. | |
[24] | 刘晨曦, 支小军, 孙雪英. 新疆工业碳排放因素分解——基于GDIM模型的实证研究[J]. 地域研究与开发, 2023, 42(4):125-129,142. |
LIU Chenxi, ZHI Xiaojun, SUN Xueying. Decomposition of industrial carbon emission factors in Xinjiang:A case study based on generalized Dirichlet index method[J]. Regional Research and Development, 2023, 42 (4): 125-129,142. | |
[25] | 王安妮, 贝雷, 高雨雯, 等. 基于STIRPAT模型的广西碳排放影响因素分析[J/OL]. 环境保护科学:1-9(2023-11-24)[2023-11-26].https://doi.org/10.16803/j.cnki.issn.1004-6216.202307008. |
WANG Anni, BEI Lei, GAO Yuwen, et al. Analysis of factors influencing carbon emissions in Guangxi based on the STIRPAT model[J/OL]. Environmental Protection Science: 1-9 (2023-11-24)[2023-11-26]. https://doi.org/10.16803/j.cnki.issn.1004-6216.202307008. | |
[26] | 王志强, 李可慧, 任金哥, 等. 基于LMDI-SD模型的山东省建筑业碳排放影响因素与情景预测[J]. 环境工程, 2023, 41(10):108-116. |
WANG Zhiqiang, LI Kehui, REN Jinge, et al. Influential factors and scenario forecast of carbon emissions of construction industry in Shandong Province based on LMDI-SD model[J]. Environmental Engineering, 2023, 41(10):108-116. | |
[27] | 程豪. 碳排放怎么算——《2006年IPCC国家温室气体清单指南》[J]. 中国统计, 2014(11):28-30. |
CHENG Hao. How to Calculate Carbon Emissions:2006 IPCC Guidelines for National Greenhouse Gas Inventories[J]. China Statistics, 2014 (11): 28-30. | |
[28] | 吉林省统计局. 吉林省统计年鉴(2023)[R]. 吉林: 吉林省统计局, 2023. |
[1] | 李菲菲, 王舒泓, 崔金栋. 全生命周期视角下汽车产业碳排放影响因素的研究——以吉林省为例[J]. 综合智慧能源, 2024, 46(8): 20-27. |
[2] | 何方波, 裴力耕, 郑睿, 范康健, 张晓曼, 李更丰. “源网荷储”协同助力陕西省新型电力系统建设[J]. 综合智慧能源, 2024, 46(7): 40-46. |
[3] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[4] | 李云, 周世杰, 胡哲千, 梁均原, 肖雷鸣. 基于NSGA-Ⅱ-WPA的综合能源系统多目标优化调度[J]. 综合智慧能源, 2024, 46(4): 1-9. |
[5] | 孙健, 张云帆, 蔡潇龙, 刘鼎群. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19. |
[6] | 魏夕凯, 谭效时, 林明, 程俊杰, 向可祺, 丁书欣. 2005—2035年全国电网碳排放因子的计算与预测[J]. 综合智慧能源, 2024, 46(3): 72-78. |
[7] | 李成雲, 杨东升, 周博文, 杨波, 李广地. 基于数字孪生技术的新型电力系统数字化[J]. 综合智慧能源, 2024, 46(2): 1-11. |
[8] | 谭九鼎, 李帅兵, 李明澈, 马喜平, 康永强, 董海鹰. 计及不确定性的分布式微网参与电网优化调度方法综述[J]. 综合智慧能源, 2024, 46(1): 38-48. |
[9] | 方刚, 王静, 张波波, 王俊哲. 基于Pareto解集的工业园区微网优化配置研究[J]. 综合智慧能源, 2024, 46(1): 49-55. |
[10] | 崔金栋, 汪羽晴. 云储能模式下用户侧储能协调优化调度机制研究[J]. 综合智慧能源, 2023, 45(9): 18-25. |
[11] | 闫丽梅, 胡汶硕. 基于复功率分布矩阵的电力系统碳流追踪方法[J]. 综合智慧能源, 2023, 45(8): 1-10. |
[12] | 李方一, 李楠, 周琰, 谢武. 基于多维数据与深度学习的区域发电碳排放因子预测研究[J]. 综合智慧能源, 2023, 45(8): 11-17. |
[13] | 何沭纬, 韩颖慧, 徐文斌, 张元勋, 单玉龙, 余运波. 不同能源策略下北京市私有机动车辆CO2排放系统仿真模拟[J]. 综合智慧能源, 2023, 45(8): 26-35. |
[14] | 李菲菲, 徐绘薇, 王舒泓, 崔金栋. 吉林省农业碳排放测度分析及影响因素研究[J]. 综合智慧能源, 2023, 45(8): 36-43. |
[15] | 李铂航, 李宏仲, 张民元. 计及负荷特性的综合能源系统低碳经济调度[J]. 综合智慧能源, 2023, 45(8): 72-79. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||