综合智慧能源 ›› 2024, Vol. 46 ›› Issue (6): 16-26.doi: 10.3969/j.issn.2097-0706.2024.06.003
王俊1(), 田浩1(
), 赵二岗2(
), 舒展3(
), 万子镜3(
)
收稿日期:
2024-02-27
修回日期:
2024-04-11
出版日期:
2024-06-25
作者简介:
王俊(1996),男,硕士生,从事综合能源系统运行优化方面的研究,wj8876@yeah.net;基金资助:
WANG Jun1(), TIAN Hao1(
), ZHAO Ergang2(
), SHU Zhan3(
), WAN Zijing3(
)
Received:
2024-02-27
Revised:
2024-04-11
Published:
2024-06-25
Supported by:
摘要:
在“双碳”背景下,园区作为节能降碳的主力军,需进一步降低碳排放量,提高能源利用效率。提出了一种计及电动汽车共享储能特性的园区低碳运行控制模型。首先,引入阶梯式碳交易机制,计算节点动态碳排放因子,并将电动汽车减排量纳入碳配额;然后,在源侧引入地源热泵,通过电-热转换,满足园区热负荷需求;在荷侧,考虑电动汽车共享储能特性,建立电动汽车共享储能模型;最后,考虑碳交易成本、购电成本、响应补贴成本等,以运行成本最小为目标建立园区低碳运行优化模型,并采用优化软件CPLEX进行求解。仿真结果表明:考虑电动汽车共享储能特性并采用改进阶梯式碳交易机制,能够有效降低园区运行成本,减少园区碳排放,验证了所提算法的经济性和低碳性。
中图分类号:
王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26.
WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles[J]. Integrated Intelligent Energy, 2024, 46(6): 16-26.
表7
不同场景收益与成本分析
项目 | 场景1 | 场景2 | 场景3 | 场景4 |
---|---|---|---|---|
总成本/元 | 3 346.00 | 3 061.10 | 3 652.80 | 1 790.20 |
购电成本/元 | 5 152.90 | 4 909.90 | 4 909.90 | 4 910.30 |
维护成本/元 | 336.15 | 350.65 | 350.65 | 350.65 |
EV收益/元 | 2 143.00 | 2 570.60 | 2 570.60 | 2 570.60 |
EV补贴/元 | 371.14 | 371.14 | 371.14 | |
碳交易成本/元 | 591.70 | -1 271.30 | ||
碳排放量/kg | 7 497.40 | 7 036.70 | 7 036.70 | 2 807.80 |
光伏消纳率/% | 77.67 | 81.50 | 81.52 | 81.52 |
[1] | WU S N, LI H Q, LIU Y, et al. A two-stage rolling optimization strategy for park-level integrated energy system considering multi-energy flexibility[J]. International Journal of Electrical Power & Energy Systems, 2023, 145:108600. |
[2] | 王奖, 邓丰强, 张勇军, 等. 园区能源互联网的规划与运行研究综述[J]电力自动化设备, 2021, 41(2):24-32,55. |
WANG Jiang, DENG Fengqiang, ZHANG Yongjun, et al. Review on planning and operation research of park energy internet[J]. Electric Power Automation Equipment, 2021, 41(2):24-32,55. | |
[3] |
刘媛媛, 刘芳芳, 贾天翔, 等. 商住园区综合能源供暖(冷)系统的方案设计及运行经济性研究[J]. 综合智慧能源, 2023, 45(12): 20-28.
doi: 10.3969/j.issn.2097-0706.2023.12.003 |
LIU Yuanyuan, LIU Fangfang, JIA Tianxiang, et al. Design of the integrated energy heating(cooling) system for a commercial and residential park and its economy analysis[J]. Integrated Intelligent Energy, 2023, 45(12): 20-28.
doi: 10.3969/j.issn.2097-0706.2023.12.003 |
|
[4] | ZHANG T Y, YAO Z J, HU J W, et al. Multi-time scale rolling optimization scheduling of "nearly-zero carbon park" based on stepped carbon allowance trading[J]. International Transactions on Electrical Energy Systems, 2022:4449515. |
[5] | 尹硕, 郭兴五, 燕景, 等. 考虑高渗透率和碳排放约束的园区综合能源系统优化运行研究[J]. 华电技术, 2021, 43(4): 1-7. |
YIN Shuo, GUO Xingwu, YAN Jing, et al. Study on optimized operation on integrated energy system in parks with high permeability and carbon emission constraints[J]. Huadian Technology, 2021, 43(4): 1-7. | |
[6] | LYU X M, LIU T Q, LIU X, et al. Low-carbon robust economic dispatch of park-level integrated energy system considering price-based demand response and vehicle-to-grid[J]. Energy, 2023, 263:125739. |
[7] | MA H, CHEN Q, HU B, et al. A compact model to coordinate flexibility and efficiency for decomposed scheduling of integrated energy system[J]. Applied Energy, 2021, 285:116474. |
[8] | CHEN C M, WU X Y, LI Y, et al. Distributionally robust day-ahead scheduling of park-level integrated energy system considering generalized energy storages[J]. Applied Energy, 2021, 302:117493. |
[9] | 黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41(S1):28-51. |
HUANG Yuhan, DING Tao, LI Yuting, et al. Overview of energy decarbonization technologies in the context of carbon neutrality and its insights into the development of novel power systems[J]. Proceedings of the CSEE, 2021, 41(S1):28-51. | |
[10] | 陈锦鹏, 胡志坚, 陈嘉滨, 等. 考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度[J]. 高电压技术, 2021, 47(9):3094-3104. |
CHEN Jinpeng, HU Zhijian, CHEN Jiabin, et al. Optimal dispatch of integrated energy system considering ladder-type carbon trading and flexible double response of supply and demand[J]. High Voltage Engineering, 2021, 47(9):3094-3104. | |
[11] |
曾慧, 杜源, 李涛, 等. 考虑碳交易与绿证交易的电-热耦合园区低碳规划[J]. 综合智慧能源, 2023, 45(2): 22-29.
doi: 10.3969/j.issn.2097-0706.2023.02.003 |
ZENG Hui, DU Yuan, LI Tao, et al. Low-carbon planning of a park-level integrated electric and heating system considering carbon trading and green certificate trading[J]. Integrated Intelligent Energy, 2023, 45(2): 22-29.
doi: 10.3969/j.issn.2097-0706.2023.02.003 |
|
[12] | WANG R T, WEN X Y, WANG X Y, et al. Low carbon optimal operation of integrated energy system based on carbon capture technology,LCA carbon emissions and ladder-type carbon trading[J]. Applied Energy, 2022, 311:118664. |
[13] | ZHANG W, WANG W, FAN X, et al. Low-carbon optimal operation strategy of multi-park integrated energy system considering multi-energy sharing trading mechanism and asymmetric Nash bargaining[J]. Energy Reports, 2023, 10:255-284. |
[14] | LIU Z, KONG X, LI S, et al. Optimal operation of carbon capture power plants considering carbon trading under low carbon economy[C]// 2022 25th International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2022:1-5. |
[15] | DUAN J D, XIA Y R, CHENG R, et al. Low carbon and economic optimal operation of integrated energy systems considering demand response[J]. Sustainable Energy, Grids and Networks, 2024, 38:101290. |
[16] | 米阳, 赵海辉, 付起欣, 等. 考虑风光不确定与碳交易的区域综合能源系统双层博弈优化运行[J]. 电网技术, 2023, 47(6):2174-2188. |
MI Yang, ZHAO Haihui, FU Qixin, et al. Two-level game optimal operation of regional integrated energy system considering wind and solar uncertainty and carbon trading[J]. Power System Technology, 2023, 47(6): 2174-2188. | |
[17] | 邹宇航, 曾艾东, 郝思鹏, 等. 阶梯式碳交易机制下综合能源系统多时间尺度优化调度[J]. 电网技术, 2023, 47(6):2185-2198. |
ZOU Yuhang, ZENG Aidong, HAO Sipeng, et al. Multi-time-scale optimal scheduling of integrated energy systems under stepped carbon trading mechanism[J]. Power System Technology, 2023, 47(6):2185-2198. | |
[18] | 马跃, 孟润泉, 魏斌, 等. 考虑阶梯式碳交易机制的微电网两阶段鲁棒优化调度[J]. 电力系统保护与控制, 2023, 51(10):22-33. |
MA Yue, MENG Runquan, WEI Bin, et al. Two-stage robust optimal scheduling of a microgrid with a stepped carbon trading mechanism[J]. Power System Protection and Control, 2023, 51(10):22-33. | |
[19] | YANG P H, JIANG H, LIU C M, et al. Coordinated optimization scheduling operation of integrated energy system considering demand response and carbon trading mechanism[J]. International Journal of Electrical Power & Energy Systems,20239 147:108902. |
[20] | 马丽叶, 朱思宇, 卢志刚, 等. 考虑时空扩散和碳汇的碳捕集-电转气协同优化调度模型[J]. 电力系统自动化, 2023, 47(2):15-23. |
MA Liye, ZHU Siyu, LU Zhigang, et al. Carbon capture-P2G collaborative optimal dispatch model considering spatiotemporal diffusion and carbon sink[J]. Automation of Electric Power Systems, 2023, 47(2):15-23. | |
[21] | 王义军, 李梦涵, 齐岩. 计及碳捕集电厂综合灵活运行方式的含P2G综合能源系统低碳经济调度[J]. 电力自动化设备, 2023, 43(1):1-8. |
WANG Yijun, LI Menghan, QI Yan. Low-carbon economic dispatching of integrated energy system with P2G considering comprehensive and flexible operation mode of carbon capture power plant[J]. Electric Power Automation Equipment, 2023, 43(1):1-8. | |
[22] | 周步祥, 陈阳, 臧天磊, 等. 考虑气网掺氢与低碳奖赏的气电耦合系统优化调度[J]. 电力自动化设备, 2023, 43(2):1-8. |
ZHOU Buxiang, CHEN Yang, ZANG Tianlei, et al. Optimal scheduling of natural gas-electricity coupling system considering hydrogen-mixed natural gas network and low-carbon reward[J]. Electric Power Automation Equipment, 2023, 43(2):1-8. | |
[23] | 贠保记, 张恩硕, 张国, 等. 考虑综合需求响应与“双碳”机制的综合能源系统优化运行[J]. 电力系统保护与控制, 2022, 50(22):11-19. |
YUN Baoji, ZHANG Enshuo, ZHANG Guo, et al. Optimal operation of an integrated energy system considering integrated demand response and a "dual carbon" mechanism[J]. Power System Protection and Control, 2022, 50(22):11-19. | |
[24] | 颜宁, 马广超, 李相俊, 等. 基于季节性碳交易机制的园区综合能源系统低碳经济调度[J/OL]. 中国电机工程学报:1-14(2022-12-08)[2024-02-02]. https://doi.org/10.13334/j.0258-8013.pcsee.222392. |
YAN Ning, MA Guangchao, LI Xiangjun, et al. Low-carbon economic dispatch of park integrated energy system based on seasonal carbon trading mechanism[J/OL]. Proceedings of the CSEE:1-14(2022-12-08)[2024-02-02]. https://doi.org/10.13334/j.0258-8013.pcsee.222392. | |
[25] | 顾欣, 王琦, 胡云龙, 等. 基于纳什议价的多微网综合能源系统分布式低碳优化运行策略[J]. 电网技术, 2022, 46(4):1464-1482. |
GU Xin, WANG Qi, HU Yunlong, et al. Distributed low-carbon optimal operation strategy of multi-microgrids integrated energy system based on Nash bargaining[J]. Power System Technology, 2022, 46(4):1464-1482. | |
[26] |
冶兆年, 赵长禄, 王永真, 等. 基于纳什议价的共享储能能源互联网络双目标优化[J]. 综合智慧能源, 2022, 44(7): 40-48.
doi: 10.3969/j.issn.2097-0706.2022.07.005 |
YE Zhaonian, ZHAO Changlu, WANG Yongzhen, et al. Dual-objective optimization of energy networks with shared energy storage based on Nash bargaining[J]. Integrated Intelligent Energy, 2022, 44(7): 40-48.
doi: 10.3969/j.issn.2097-0706.2022.07.005 |
|
[27] | ZHANG W, WANG W, FAN X, et al. Low-carbon optimal operation strategy of multi-park integrated energy system considering multi-energy sharing trading mechanism and asymmetric Nash bargaining[J]. Energy Reports, 2023, 10: 255-284. |
[28] | 王浩, 康博阳, 郑征, 等. 考虑电动汽车灵活储能的交直流混合微电网功率协调控制策略[J]. 电网技术, 2023, 47(5):2009-2025. |
WANG Hao, KANG Boyang, ZHENG Zheng, et al. Power coordinated control strategy of AC-DC hybrid microgrid considering flexible energy storage for electric vehicles[J]. Power System Technology, 2023, 47(5):2009-2025. | |
[29] |
孙雨乐, 漆淘懿, 赵宇明, 等. 路网耦合下计及电动汽车V2G潜力的充电站选址定容研究[J]. 综合智慧能源, 2024, 46(1): 1-10.
doi: 10.3969/j.issn.2097-0706.2024.01.001 |
SUN Yule, QI Taoyi, ZHAO Yuming, et al. Siting and sizing of electric vehicle charging stations under the coupling of transport and power networks considering V2G potential[J]. Integrated Intelligent Energy, 2024, 46(1): 1-10.
doi: 10.3969/j.issn.2097-0706.2024.01.001 |
|
[30] | 崔岩, 胡泽春, 段小宇. 考虑充电需求空间灵活性的电动汽车运行优化研究综述[J]. 电网技术, 2022, 46(3):981-994. |
CUI Yan, HU Zechun, DUAN Xiaoyu. Review on the electric vehicles operation optimization considering the spatial flexibility of electric vehicles charging demands[J]. Power System Technology, 2022, 46(3):981-994. | |
[31] | 李咸善, 方子健, 李飞, 等. 含多微电网租赁共享储能的配电网博弈优化调度[J]. 中国电机工程学报, 2022, 42(18):6611-6625. |
LI Xianshan, FANG Zijian, LI Fei, et al. Game-based optimal dispatching strategy for distribution network with multiple microgrids leasing shared energy storage[J]. Proceedings of the CSEE, 2022, 42(18):6611-6625. | |
[32] | 帅轩越, 马志程, 王秀丽, 等. 基于主从博弈理论的共享储能与综合能源微网优化运行研究[J]. 电网技术, 2023, 47(2):679-690. |
SHUAI Xuanyue, MA Zhicheng, WANG Xiuli, et al. Optimal operation of shared energy storage and integrated energy microgrid based on leader-follower game theory[J]. Power System Technology, 2023, 47(2):679-690. | |
[33] | 高爽, 戴如鑫. 电动汽车集群参与调频辅助服务市场的充电调控策略[J]. 电力系统自动化, 2023, 47(18):60-67. |
GAO Shuang, DAI Ruxin. Charging control strategy for electric vehicle cluster participating in frequency regulation ancillary service market[J]. Automation of Electric Power Systems, 2023, 47(18):60-67. | |
[34] | 詹祥澎, 杨军, 韩思宁, 等. 考虑电动汽车可调度潜力的充电站两阶段市场投标策略[J]. 电力系统自动化, 2021, 45(10):86-96. |
ZHAN Xiangpeng, YANG Jun, HAN Sining, et al. Two-stage market bidding strategy of charging station considering schedulable potential capacity of electric vehicle[J]. Automation of Electric Power Systems, 2021, 45(10):86-96. | |
[35] | 朱旭, 孙元章, 杨博闻, 等. 考虑不确定性与非完全理性用能行为的电动汽车集群可调度潜力计算方法[J]. 电力自动化设备, 2022, 42(10):245-254. |
ZHU Xu, SUN Yuanzhang, YANG Bowen, et al. Calculation method of EV cluster's schedulable potential capacity considering uncertainties and bounded rational energy consumption behaviors[J]. Electric Power Automation Equipment, 2022, 42(10):245-254. | |
[36] | 章攀钊, 谢丽蓉, 马瑞真, 等. 考虑电动汽车集群可调度能力的多主体两阶段低碳优化运行策略[J]. 电网技术, 2022, 46(12):4809-4825. |
ZHANG Panzhao, XIE Lirong, MA Ruizhen, et al. Multiplayer two-stage low carbon optimal operation strategy considering electric vehicle cluster schedulability[J]. Power System Technology, 2022, 46(12):4809-4825. |
[1] | 李菲菲, 徐绘薇, 崔金栋. 基于STIRPAT模型的吉林省石化行业碳排放影响因素研究[J]. 综合智慧能源, 2024, 46(8): 12-19. |
[2] | 李菲菲, 王舒泓, 崔金栋. 全生命周期视角下汽车产业碳排放影响因素的研究——以吉林省为例[J]. 综合智慧能源, 2024, 46(8): 20-27. |
[3] | 何方波, 裴力耕, 郑睿, 范康健, 张晓曼, 李更丰. “源网荷储”协同助力陕西省新型电力系统建设[J]. 综合智慧能源, 2024, 46(7): 40-46. |
[4] | 孙健, 张云帆, 蔡潇龙, 刘鼎群. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19. |
[5] | 李成雲, 杨东升, 周博文, 杨波, 李广地. 基于数字孪生技术的新型电力系统数字化[J]. 综合智慧能源, 2024, 46(2): 1-11. |
[6] | 崔金栋, 汪羽晴. 云储能模式下用户侧储能协调优化调度机制研究[J]. 综合智慧能源, 2023, 45(9): 18-25. |
[7] | 闫丽梅, 胡汶硕. 基于复功率分布矩阵的电力系统碳流追踪方法[J]. 综合智慧能源, 2023, 45(8): 1-10. |
[8] | 李铂航, 李宏仲, 张民元. 计及负荷特性的综合能源系统低碳经济调度[J]. 综合智慧能源, 2023, 45(8): 72-79. |
[9] | 郁海彬, 高亦凌, 陆增洁, 董帅, 鲁林, 任逸之. 计及需求响应的风-火-储-碳捕集多源参与深度调峰市场的低碳经济调度[J]. 综合智慧能源, 2023, 45(8): 80-89. |
[10] | 葛磊蛟, 于惟坤, 朱若源, 王关涛, 白星振. 考虑改进阶梯式碳交易机制与需求响应的综合能源系统优化调度[J]. 综合智慧能源, 2023, 45(7): 97-106. |
[11] | 王永林, 白永峰, 孔祥山, 郝正, 杨彭飞, 孔德伟. 基于CNN-LSTM算法的脱硝优化控制模型研究[J]. 综合智慧能源, 2023, 45(6): 25-33. |
[12] | 胡玮麟, 谭梦娇, 朱艺, 张轩, 李辉, 杨海平. 生物质储藏技术研究进展[J]. 综合智慧能源, 2023, 45(5): 80-85. |
[13] | 孙健, 王寅武, 吴可欣, 陶建龙, 秦宇. 综合能源系统中热泵技术研究与应用[J]. 综合智慧能源, 2023, 45(4): 1-11. |
[14] | 孙健, 秦宇, 王寅武, 吴可欣, 戈志华. 基于新型工质热泵的烟气余热回收优化温度研究[J]. 综合智慧能源, 2023, 45(4): 19-25. |
[15] | 李华, 陆明璇, 佟永吉, 仲崇飞. 态势感知技术在新型电力系统运行中的应用[J]. 综合智慧能源, 2023, 45(3): 24-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||