综合智慧能源 ›› 2023, Vol. 45 ›› Issue (6): 25-33.doi: 10.3969/j.issn.2097-0706.2023.06.004
收稿日期:
2023-01-28
修回日期:
2023-03-06
接受日期:
2023-06-25
出版日期:
2023-06-25
作者简介:
王永林(1976),男,高级工程师,硕士,从事电厂自动化与智慧化研究,wangyonglin@chec.com.cn。
基金资助:
WANG Yonglin(), BAI Yongfeng, KONG Xiangshan, HAO Zheng, YANG Pengfei, KONG Dewei
Received:
2023-01-28
Revised:
2023-03-06
Accepted:
2023-06-25
Published:
2023-06-25
Supported by:
摘要:
为进一步推进“双碳”目标,多数火电厂开始对机组优化改造以适应深度调峰运行新要求。某电厂2×330 MW烟气脱硝项目采用选择性催化还原(SCR)工艺。随着设备老化、系统改造、催化剂寿命缩短、煤质不稳定以及深度调峰下的运行需求变化等,原先的控制模型不能很好地满足脱硝系统新的工况运行要求。通过建立基于Hadoop技术的脱硝生产数据优化分析平台,利用锅炉燃烧以及烟气治理过程中与NOx相关的参数数据构建生产数据中台,通过卷积神经网络(CNN)算法对影响NOx质量浓度的数据序列进行特征提取,对影响脱硝环节控制的特征参数进行数据挖掘,利用长短期记忆(LSTM)算法预测NOx生成质量浓度,训练并定期按需更新CNN-LSTM模型,实现脱硝过程闭环优化控制。
中图分类号:
王永林, 白永峰, 孔祥山, 郝正, 杨彭飞, 孔德伟. 基于CNN-LSTM算法的脱硝优化控制模型研究[J]. 综合智慧能源, 2023, 45(6): 25-33.
WANG Yonglin, BAI Yongfeng, KONG Xiangshan, HAO Zheng, YANG Pengfei, KONG Dewei. Study on denitration optimization control model based on CNN-LSTM algorithm[J]. Integrated Intelligent Energy, 2023, 45(6): 25-33.
[1] | 胡小夫, 王云, 郝正, 等. 燃煤电站SCR催化剂寿命在线预测研究[J]. 华电技术, 2021, 43(3):65-69. |
HU Xiaofu, WANG Yun, HAO Zheng, et al. Research on SCR catalyst service life on-line prediction in coal-fired power plants[J]. Huadian Technology, 2021, 43(3):65-69. | |
[2] | 曹喜果, 张永涛, 李雅恬. 基于IQGA-GRNN模型的SCR脱硝出口NOx质量浓度预测方法[J]. 华电技术, 2021, 43(5):9-14. |
CAO Xiguo, ZHANG Yongtao, LI Yatian. Prediction method for NOx discharged from SCR denitrification systems based on IQGA-GRNN model[J]. Huadian Technology, 2021, 43(5):9-14. | |
[3] | 赵大周, 王明祥, 阮慧锋, 等. 分布式能源站天然气内燃机Urea-SCR系统模拟优化研究[J]. 华电技术, 2021, 43(5):45-52. |
ZHAO Dazhou, WANG Mingxiang, RUAN Huifeng, et al. Simulation and optimization for Urea-SCR system of the natural gas internal combustion engine in a distributed energy station[J]. Huadian Technology, 2021, 43(5):45-52. | |
[4] |
孟范伟, 徐博, 吕晓永, 等. 神经网络预测控制在SCR烟气脱硝系统中应用[J]. 东北大学学报(自然科学版), 2017, 38(6):778-782.
doi: 10.12068/j.issn.1005-3026.2017.06.004 |
MENG Fanwei, XU Bo, LYU Xiaoyong, et al. Application of neural network predictive control in SCR flue gas denitration system[J]. Journal of Northeastern University(Natural Science Edition), 2017, 38(6):778-782. | |
[5] | 黄镇柯, 金志远, 朱恒毅, 等. 基于多层感知器神经网络的燃煤电站SCR脱硝系统建模[J]. 湖北电力, 2022, 46(3):100-105. |
HUANG Zhenke, JIN Zhiyuan, ZHU Hengyi, et al. Modeling of SCR denitrification system in coal-fired power station based on multilayer perceptron neural network[J]. Hubei Electric Power, 2022, 46(3):100-105. | |
[6] | 王林, 高林, 郭亦文, 等. 离散粒子群寻优径向基神经网络模型在脱硝控制中应用[J]. 热力发电, 2019, 48(10):22-27,37. |
WANG Lin, GAO Lin, GUO Yiwen, et al. Application of RBF neural network based on discrete particle swarm optimization in denitrification control[J]. Thermal Power Generation, 2019, 48(10):22-27,37. | |
[7] | 王天堃. 基于神经网络模型及预测控制DMC的火电机组脱硝控制策略[J]. 中国电力, 2019, 52(12):140-145. |
WANG Tiankun. The denitration strategy of predictive dynamic matrix control (DMC) combined with BP neural network in fossil fuel power plant[J]. Electric Power, 2019, 52(12):140-145. | |
[8] | 陈静, 洪乔, 姜媛媛. 基于改进动态矩阵算法的SCR烟气脱硝系统[J]. 哈尔滨商业大学学报(自然科学版), 2022, 38(2):171-176. |
CHEN Jing, HONG Qiao, JIANG Yuanyuan. Study on SCR denitrification system based on improved dynamic matrix algorithm[J]. Journal of Harbin University of Commerce (Natural Sciences Edition), 2022, 38(2):171-176. | |
[9] |
陈皓炜, 贾新春, 孙小明, 等. SCR脱硝系统的强化学习复合串级控制[J]. 动力工程学报, 2022, 42(5):421-428.
doi: 10.19805/j.cnki.jcspe.2022.05.005 |
CHEN Haowei, JIA Xinchun, SUN Xiaoming, et al. Composite cascade control based on reinforcement learning for a SCR denitration system[J]. Journal of Chinese Society of Power Engineering, 2022, 42(5):421-428. | |
[10] | 江顺, 陈荣宇, 林伟君, 等. 基于大数据的智能农业云服务平台设计与实现[J]. 安徽农业科学, 2022, 50(16):190-197. |
JIANG Shun, CHEN Rongyu, LIN Weijun, et al. Design and implementation of intelligent agricultural cloud service platform based on big data technology[J]. Journal of Anhui Agricultural Sciences, 2022, 50(16):190-197. | |
[11] | 王新柱, 赵杰. 基于Hadoop生态系统的电网量测数据共享技术研究[J]. 电气传动自动化, 2022, 44(1):40-43. |
WANG Xinzhu, ZHAO Jie. Research on power grid measurement data sharing technology based on Hadoop ecosystem[J]. Electric Drive Automation, 2022, 44(1):40-43. | |
[12] | 陈行滨, 王周, 郑飘飘, 等. 基于分布式文件系统电力大数据存储实现[J]. 粘接, 2022, 49(6):172-175. |
CHEN Xingbin, WANG Zhou, ZHENG Piaopiao, et al. Realization of power big data storage based on distributed file system[J]. Adhesion, 2022, 49(6):172-175. | |
[13] | 李娟. 基于Hadoop云平台的空间属性数据挖掘技术研究[J]. 南京理工大学学报(自然科学版), 2022, 46(4):419-426. |
LI Juan. Research on spatial attribute data mining technology based on hadoop cloud platform[J]. Journal of Nanjing University of Science and Technology(Natural Sciences Edition), 2022, 46(4):419-426. | |
[14] | 唐建海. 基于Hadoop平台的网络安全趋势大数据挖掘算法[J]. 工业加热, 2022, 51(7):67-70. |
TANG Jianhai. Big data mining algorithm of network security trend based on Hadoop platform[J]. Industrial Heating, 2022, 51(7):67-70. | |
[15] | 刘岳, 于静, 金秀章. 基于特征优化和改进长短期记忆神经网络的NOx质量浓度预测[J]. 热力发电, 2021, 50(7):162-169. |
LIU Yue, YU Jing, JIN Xiuzhang. NOx mass concentration prediction based on Feature optimization and improved LSTM network[J]. Thermal Power Generation, 2021, 50(7):162-169. | |
[16] | 方鹏, 高亚栋, 潘国兵, 等. 基于LSTM神经网络的中长期光伏电站发电量预测方法研究[J]. 可再生能源, 2022, 40(1):48-54. |
FANG Peng, GAO Yangdong, PAN Guobing, et al. Research on forecasting method of mid- and long-term photovoltaic power generation based on LSTM neural network[J]. Renewable Energy Resources, 2022, 40(1):48-54. | |
[17] | 郑必君, 金宏伟, 孟瑜炜, 等. 改进型LSTM实现燃煤电厂脱硝预警及优化[J]. 能源工程, 2021(2):53-60. |
ZHENG Bijun, JIN Hongwei, MENG Yuwei, et al. Realization of early warning and optimization of denitrification in coal-fired power plants by improved LSTM realizes[J]. Energy Engineering, 2021(2):53-60. | |
[18] | 姚宁, 金秀章, 李阳峰. 基于改进鲸鱼算法优化Bi-LSTM的脱硝系统NOx建模[J]. 华北电力大学学报(自然科学版), 2022, 49(6):76-83. |
YAO Ning, JIN Xiuzhang, LI Yangfeng. NOx Modeling of denitrification system based on Bi-LSTM optimized by improved whale algorithm[J]. Journal of North China Electric Power University(Natural Science Edition), 2022, 49(6):76-83. | |
[19] | 温鑫, 钱玉良, 彭道刚, 等. 基于深度双向LSTM的SCR系统NOx排放预测模型研究[J]. 热能动力工程, 2020, 35(10):57-64. |
WEN Xin, QIAN Yuliang, PENG Daogang, et al. NOx emission prediction model of SCR system based on deep bidirectional LSTM[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(10):57-64. | |
[20] | 简定辉, 李萍, 黄宇航, 等. 基于CNN-LSTM网络的短期电力负荷预测[J]. 电工电气, 2022(9):1-6. |
JIAN Dinghui, LI Ping, HUANG Yuhang, et al. Short-term power load forecasting based on CNN-LSTM[J]. Electrotechnics Electric, 2022(9):1-6. | |
[21] | 黄治军. 基于EEMD和卷积神经网络的电站NOx排放预测[J]. 热能动力工程, 2022, 37(10):96-103. |
HUANG Zhijun. Prediction of NOx emissions from power plants based on EEMD and convolutional neural network[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(10):96-103. | |
[22] | KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks[C]// Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2014:1725-1732. |
[23] |
TAKAHASHI R, MATSUBARA T, UEHARA K. A novel weight-shared multi-stage CNN for scale robustness[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29(4):1090-1101.
doi: 10.1109/TCSVT.76 |
[24] |
GREFF K, SRIVASTAVA R K, KOUTNIK J, et al. LSTM:A search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10):2222-2232.
doi: 10.1109/TNNLS.2016.2582924 |
[25] | 韩金磊, 熊萍萍, 孙继红. 基于LSTM和灰色模型的股价时间序列预测研究[J/OL]. 南京信息工程大学学报(自然科学版):1-22(2023-01-06)[2023-03-05]. http://kns.cnki.net/kcms/detail/32.1801.N.20230105.1635.003.html. |
HAN Jinlei, XIONG Pingping, SUN Jihong. Stock price time series prediction based on LSTM and grey model[J/OL]. Journal of Nanjing University of Information Science & Technology(Natural Science Edition):1-22(2023-01-06)[2023-03-05]. http://kns.cnki.net/kcms/detail/32.1801.N.20230105.1635.003.html. | |
[26] | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1):1929-1958. |
[1] | 李菲菲, 徐绘薇, 崔金栋. 基于STIRPAT模型的吉林省石化行业碳排放影响因素研究[J]. 综合智慧能源, 2024, 46(8): 12-19. |
[2] | 李菲菲, 王舒泓, 崔金栋. 全生命周期视角下汽车产业碳排放影响因素的研究——以吉林省为例[J]. 综合智慧能源, 2024, 46(8): 20-27. |
[3] | 王雅雯, 宗绍梁, 程之远, 陆万鹏. 基于FTA的火电厂SCR脱硝系统可靠性评价[J]. 综合智慧能源, 2024, 46(8): 77-85. |
[4] | 殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7): 12-20. |
[5] | 何方波, 裴力耕, 郑睿, 范康健, 张晓曼, 李更丰. “源网荷储”协同助力陕西省新型电力系统建设[J]. 综合智慧能源, 2024, 46(7): 40-46. |
[6] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[7] | 杜龙, 沙建秀, 樊贝, 胡静威, 刘增稷. 基于信息物理双侧数据的配电网CPS窃电检测方法[J]. 综合智慧能源, 2024, 46(5): 20-29. |
[8] | 孙健, 张云帆, 蔡潇龙, 刘鼎群. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19. |
[9] | 徐聪, 胡永锋, 张爱平, 由长福. 基于特征筛选的综合能源系统多元负荷日前-日内预测[J]. 综合智慧能源, 2024, 46(3): 45-53. |
[10] | 李成雲, 杨东升, 周博文, 杨波, 李广地. 基于数字孪生技术的新型电力系统数字化[J]. 综合智慧能源, 2024, 46(2): 1-11. |
[11] | 江善和, 李伟, 徐小艳, 王德凯. 基于变分模态分解改进生成对抗网络的短期风电功率预测[J]. 综合智慧能源, 2024, 46(2): 28-35. |
[12] | 崔金栋, 汪羽晴. 云储能模式下用户侧储能协调优化调度机制研究[J]. 综合智慧能源, 2023, 45(9): 18-25. |
[13] | 闫丽梅, 胡汶硕. 基于复功率分布矩阵的电力系统碳流追踪方法[J]. 综合智慧能源, 2023, 45(8): 1-10. |
[14] | 李铂航, 李宏仲, 张民元. 计及负荷特性的综合能源系统低碳经济调度[J]. 综合智慧能源, 2023, 45(8): 72-79. |
[15] | 郁海彬, 高亦凌, 陆增洁, 董帅, 鲁林, 任逸之. 计及需求响应的风-火-储-碳捕集多源参与深度调峰市场的低碳经济调度[J]. 综合智慧能源, 2023, 45(8): 80-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||