综合智慧能源 ›› 2024, Vol. 46 ›› Issue (3): 45-53.doi: 10.3969/j.issn.2097-0706.2024.03.006
收稿日期:
2024-01-19
修回日期:
2024-02-08
出版日期:
2024-03-25
作者简介:
徐聪(1989),女,博士后,博士,从事综合能源系统负荷预测、系统优化运行研究等方面的研究, xucong@chec.com.cn。
基金资助:
XU Cong1(), HU Yongfeng1, ZHANG Aiping1, YOU Changfu2
Received:
2024-01-19
Revised:
2024-02-08
Published:
2024-03-25
Supported by:
摘要:
负荷预测是指导综合能源系统调度与运行的前提。为更加经济高效地实施系统日前计划、日内优化,提出一种基于特征筛选的多元负荷日前-日内预测方法。首先,结合特征工程中3类特征筛选方法筛选预测模型输入特征,简化模型的同时能够保存下最重要的特征,针对日前-日内预测策略分别确立输入特征集;然后通过多任务学习硬共享机制,采用长短期记忆神经网络建立预测模型,实现不同子任务信息共享,并通过随机搜索方法优化网络参数以提高预测精度;最后以北京某产业园区供暖季电、热负荷为案例进行分析,日前、日内预测综合精度分别达到91.3%和95.2%。分析结果表明,该预测方法能够为系统日前调度和日内运行优化提供良好支撑,且预测结果优于未经特征筛选预测和单独负荷预测,证明了该预测方法具有更高的预测精度。
中图分类号:
徐聪, 胡永锋, 张爱平, 由长福. 基于特征筛选的综合能源系统多元负荷日前-日内预测[J]. 综合智慧能源, 2024, 46(3): 45-53.
XU Cong, HU Yongfeng, ZHANG Aiping, YOU Changfu. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening[J]. Integrated Intelligent Energy, 2024, 46(3): 45-53.
[1] | 别朝红, 王旭, 胡源. 能源互联网规划研究综述及展望[J]. 中国工程电机学报, 2017, 37(22):6445-6462. |
BIE Chaohong, WANG Xu, HU Yuan. Review and prospect of planning of energy internet[J]. Proceedings of the CSEE, 2017, 37(22):6445-6462. | |
[2] | 曾鸣, 王永利, 张硕, 等. 综合能源系统[M]. 北京: 中国电力出版社, 2020. |
[3] | 付子昱. 基于负荷预测的综合能源系统混合时间尺度优化运行[D]. 北京: 华北电力大学, 2021. |
FU Ziyu. Hybrid-time scale optimal scheduling of integrated energy systems with load forecasting[D]. Beijing: North China Electric Power University, 2021. | |
[4] | 朱继忠, 董瀚江, 李盛林, 等. 数据驱动的综合能源系统负荷预测综述[J]. 中国电机工程学报, 2021, 41(23):7905-7923. |
ZHU Jizhong, DONG Hanjiang, LI Shenglin, et al. Review of data-driven load forecasting for integrated energy system[J]. Proceedings of the CSEE, 2021, 41(23):7905-7923. | |
[5] | 史佳琪, 谭涛, 郭经, 等. 基于深度结构多任务学习的园区型综合能源系统多元负荷预测[J]. 电网技术, 2018, 42(3):698-706. |
SHI Jiaqi, TAN Tao, GUO Jing, et al. Multi-task learning based on deep architecture for various types of load forecasting in regional energy system integration[J]. Power System Technology, 2018, 42(3):698-706. | |
[6] |
CHEN B Y, WANG Y F. Short-term electric load forecasting of integrated energy system considering nonlinear synergy between different loads[J]. IEEE Access, 2021, 9:43562-43573.
doi: 10.1109/ACCESS.2021.3066915 |
[7] | 王永利, 周泯含, 姚苏航, 等. 基于多能耦合机理的综合能源系统多元负荷协同预测模型[J]. 华北电力大学学报, 2022, 49(2):118-126. |
WANG Yongli, ZHOU Minhan, YAO Suhang, et al. Multi-load cooperative prediction model of integrated energy system based on multi-energy coupling mechanism[J]. Journal of North China Electric Power University, 2022, 49(2):118-126. | |
[8] | 吕忠麟, 顾洁, 孟璐. 基于耦合特征与多任务学习的综合能源系统短期负荷预测[J]. 电力系统自动化, 2022, 46(11):58-66. |
LV Zhonglin, GU Jie, MENG Lu. Short-term load forecasting for integrated energy system based on coupling features and multi-task learning[J]. Automation of Electric Power Systems, 2022, 46(11):58-66. | |
[9] |
金立, 张力, 唐杨. 考虑温湿指数与耦合特征的综合能源负荷短期预测[J]. 综合智慧能源, 2023, 45(7):70-77.
doi: 10.3969/j.issn.2097-0706.2023.07.008 |
JIN Li, ZHANG Li, TANG Yang. Short-term prediction on integrated energy loads considering temperature-humidity index and coupling characteristics[J]. Integrated Intelligent Energy, 2023, 45(7):70-77.
doi: 10.3969/j.issn.2097-0706.2023.07.008 |
|
[10] | 李家钊. 基于特征迁移学习与耦合关系挖掘的综合能源系统小样本日前负荷预测[D]. 徐州: 中国矿业大学, 2021. |
LI Jiazhao. Small-sample day-ahead load forecasting of integrated energy system based on feature transfer learning and coupling relationship mining[D]. Xuzhou: China University of Mining and Technology, 2021. | |
[11] | 翟晶晶, 吴晓蓓, 王力立. 基于径向基函数神经网络的综合能源系统多元负荷短期预测[J]. 电力需求侧管理, 2019, 21(4):23-17. |
ZHAI Jingjing, WU Xiaobei, WANG Lili. Multiple short-term load forecasting in integrated energy system based on RBF-NN model[J]. Power Demand Side Management, 2019, 21(4):23-17. | |
[12] |
马建鹏, 龚文杰, 张智晟. 基于Copula理论与KPCA-GRNN结合的区域综合能源系统多元负荷短期预测模型[J]. 电工电能新技术, 2020, 39(3):24-31.
doi: 10.12067/ATEEE1903001 |
MA Jianpeng, GONG Wenjie, ZHANG Zhisheng. Short-term multiple load prediction model for regional integrated energy system based on Copula theory and KPCA-GRNN[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(3):24-31.
doi: 10.12067/ATEEE1903001 |
|
[13] | 何桂雄, 金璐, 李克成, 等. 基于改进 DaNN 的综合能源系统多能负荷预测[J]. 电力工程技术, 2021, 40(6):25-33. |
HE Guixiong, JIN Lu, LI Kecheng, et al. Multiple energy load forecasting of integrated energy system based on improved DaNN[J]. Electric Power Engineering Technology, 2021, 40(6):25-33. | |
[14] | 王玥, 鞠振河, 汤梓涵. 基于GA-BP神经网络冷热电联供系统的负荷预测[J]. 电工技术, 2022(7):40-42,189. |
WANG Yue, JU Zhenhe, TANG Zihan. GA-BP neural network based load prediction of combined cooling, heating and power energy supply[J]. Electric Engineering, 2022(7):40-42,189. | |
[15] | 陈锦鹏, 胡志坚, 陈纬楠, 等. 二次模态分解组合DBiLSTM-MLR的综合能源系统负荷预测[J]. 电力系统自动化, 2021, 45(13):85-94. |
CHEN Jinpeng, HU Zhijian, CHEN Weinan, et al. Load prediction of integrated energy system based on combination of quadratic modal decomposition and deep bidirectional long short-term memory and multiple linear regression[J]. Automation of Electric Power Systems, 2021, 45(13):85-94. | |
[16] | 张文栋, 刘子琨, 梁涛, 等. 基于CNN-LSTM的综合能源系统负荷预测模型[J]. 重庆邮电大学学报(自然科学版), 2023, 35(2):254-262. |
ZHANG Wendong, LIU Zikun, LIANG Tao, et al. Load prediction model of integrated energy system based on CNN-LSTM[J]. Journal of Chongqing University of Posts and Telecommunications(Nature Science Edition), 2023, 35(2):254-262. | |
[17] | 王琛, 王颖, 郑涛, 等. 基于ResNet-LSTM网络和注意力机制的综合能源系统多元负荷预测[J]. 电工技术学报, 2022, 37(7):1789-1799. |
WANG Chen, WANG Ying, ZHENG Tao, et al. Multi-energy load forecasting in integrated energy system based on ResNet-LSTM network and attention mechanism[J]. Transactions of China Electrotechnical Society, 2022, 37(7):1789-1799. | |
[18] | 廖清阳, 王军, 胡凯强, 等. 基于深度并行CNN-BiLSTM 的能源互联网电负荷和热负荷联合预测模型[J]. 中国测试, 2022, 48(4):146-153. |
LIAO Qingyang, WANG Jun, HU Kaiqiang, et al. Joint forecasting model of electrical load and thermal load based on deep parallel CNN-BiLSTM in energy internet[J]. China Measurement & Test, 2022, 48(4):146-153. | |
[19] | YAO Z J, ZHANG T Y, WANG Q M, et al. Short-term power load forecasting of integrated energy system based on attention-CNN-DBILSTM[J]. Mathematical Problems in Engineering, 2022, 1:12. |
[20] |
ZHENG J Y, ZHANG L Y, CHEN J P, et al. Multiple-load forecasting for integrated energy system based on Copula-DBiLSTM[J]. Energies, 2021, 14(8):2188-2201.
doi: 10.3390/en14082188 |
[21] | 王愈轩, 刘尔佳, 黄永章. 数据驱动下的综合能源系统短期多元负荷预测[J]. 计算机工程与设计, 2022, 43(5):1435-1442. |
WANG Yuxuan, LIU Erjia, HUANG Yongzhang. Data driven short-term multiple load forecasting for integrated energy system[J]. Computer Engineering and Design, 2022, 43(5):1435-1442. | |
[22] |
LI C, LI G J, WANG K Y, et al. A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems[J]. Energy, 2022, 259(15):124967.
doi: 10.1016/j.energy.2022.124967 |
[23] | LIU Y J, LI Y, LI G L, et al. Review of multiple load forecasting method for integrated energy system[J]. Frontiers In Energy Reasearch, 2023, 11:1296800. |
[24] | 孙庆凯, 王小君, 张义志, 等. 基于LSTM 和多任务学习的综合能源系统多元负荷预测[J]. 电力系统自动化, 2021, 45(5):63-70. |
SUN Qingkai, WANG Xiaojun, ZHANG Yizhi, et al. Multiple load prediction of integrated energy system based on long short-term memory and multi-task learning[J]. Automation of Electric Power Systems, 2021, 45(5):63-70. | |
[25] | 吴晨, 姚菁, 薛贵元, 等. 基于MMoE多任务学习和长短时记忆网络的综合能源系统负荷预测[J]. 电力自动化设备, 2022, 42(7):33-39. |
WU Chen, YAO Jing, XUE Guiyuan, et al. Load forecasting of integrated energy system based on MMoE multi-task learning and LSTM[J]. Electric Power Automation Equipment, 2022, 42(7):33-39. | |
[26] |
欧阳静, 杨吕, 尹康, 等. 基于ALIF-LSTM多任务学习的综合能源系统短期负荷预测[J]. 太阳能学报, 2022, 43(9):499-507.
doi: 10.19912/j.0254-0096.tynxb.2020-1383 |
OUYANG Jing, YANG Lv, YIN Kang, et al. Short-term load forecasting method for integrated energy system based on ALIF-LSTM and multi-task learning[J]. Acta Energiae Solaris Sinica, 2022, 43(9):499-507.
doi: 10.19912/j.0254-0096.tynxb.2020-1383 |
|
[27] | 章昊. 基于中、 短时间尺度的春节负荷特征滚动预测[J]. 东北电力技术, 2022, 43(2):28-32. |
ZHANG Hao. Spring Festival load characteristic time-process forecasting based on medium and short time scales[J]. Northeast Electric Power Technology, 2022, 43(2):28-32. | |
[28] | 秦爽, 朱秋成, 施宇丹. 基于MI-LSTM输电线动态参数修正的电力系统可用输电能力计算[J]. 东北电力技术, 2023, 44(11):1-6. |
QIN Shuang, ZHU Qiucheng, SHI Yudan. Available transfer capability calculation of power systems based on MI-LSTM transmission line dynamic parameter modification[J]. Northeast Electric Power Technology, 2023, 44(11):1-6. |
[1] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[2] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[3] | 龚钢军, 王路遥, 常卓越, 柳旭, 邢汇笛. 基于能源枢纽的综合能源信息物理系统安全防护架构研究[J]. 综合智慧能源, 2024, 46(5): 65-72. |
[4] | 李云, 周世杰, 胡哲千, 梁均原, 肖雷鸣. 基于NSGA-Ⅱ-WPA的综合能源系统多目标优化调度[J]. 综合智慧能源, 2024, 46(4): 1-9. |
[5] | 史明明, 朱睿, 刘瑞煌. 交直流电力系统与供热系统联合经济调度[J]. 综合智慧能源, 2024, 46(4): 10-16. |
[6] | 陈勇, 肖雷鸣, 王井南, 吴健. 基于场景扩充的低碳综合能源系统高可靠性容量规划方法[J]. 综合智慧能源, 2024, 46(4): 24-33. |
[7] | 王京龙, 王晖, 杨野, 郑颖颖. 考虑多重不确定性的电-热-气综合能源系统协同优化方法[J]. 综合智慧能源, 2024, 46(4): 42-51. |
[8] | 钟永洁, 王紫东, 左建勋, 王常青, 李靖霞, 纪陵. 计及多时段尺度与地域分层的多能互补系统经济调度[J]. 综合智慧能源, 2024, 46(4): 52-59. |
[9] | 江善和, 李伟, 徐小艳, 王德凯. 基于变分模态分解改进生成对抗网络的短期风电功率预测[J]. 综合智慧能源, 2024, 46(2): 28-35. |
[10] | 张力, 金立, 任炬光, 刘小兵. 计及气象因素与分时电价影响的综合能源系统负荷调控策略研究[J]. 综合智慧能源, 2024, 46(1): 18-27. |
[11] | 李铂航, 李宏仲, 张民元. 计及负荷特性的综合能源系统低碳经济调度[J]. 综合智慧能源, 2023, 45(8): 72-79. |
[12] | 王永真, 韩艺博, 韩恺, 韩俊涛, 宋阔, 张兰兰. 基于知识图谱的数据中心综合能源系统研究综述[J]. 综合智慧能源, 2023, 45(7): 1-10. |
[13] | 曹紫霖, 王文静, 赵薇, 康利改, 高晓峰, 杨炀, 王金柱. 考虑需求响应的负荷密集区分布式综合能源系统优化调度研究[J]. 综合智慧能源, 2023, 45(7): 11-21. |
[14] | 李宜哲, 王丹, 贾宏杰, 周天烁, 曹逸滔, 张帅, 刘佳委. 综合能源系统能量枢纽多样性建模和典型适用性研究[J]. 综合智慧能源, 2023, 45(7): 22-29. |
[15] | 金立, 张力, 唐杨, 唐侨, 任炬光, 杨焜, 刘小兵. 考虑温湿指数与耦合特征的综合能源负荷短期预测[J]. 综合智慧能源, 2023, 45(7): 70-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||