综合智慧能源 ›› 2023, Vol. 45 ›› Issue (4): 1-11.doi: 10.3969/j.issn.2097-0706.2023.04.001
• 观点综述 • 下一篇
收稿日期:
2022-07-04
修回日期:
2022-09-08
接受日期:
2023-03-14
出版日期:
2023-04-25
作者简介:
孙健(1985),男,副教授,硕士生导师,博士,从事工业及民用领域新型热泵技术研发和应用方面的研究,s@ncepu.edu.cn。
基金资助:
SUN Jian(), WANG Yinwu, WU Kexin, TAO Jianlong, QIN Yu
Received:
2022-07-04
Revised:
2022-09-08
Accepted:
2023-03-14
Published:
2023-04-25
Supported by:
摘要:
在“双碳”背景下,综合能源系统不断地推进可再生能源灵活消纳、低碳化供热供冷、工业余热利用及配合电网灵活调峰等领域的技术改革。热泵因具有高效率、低污染的特点,在综合能源系统中得到广泛应用。热泵可作为系统的供能及储能单元。在综合能源系统中,以能量来源为依据,热泵被分为空气源、水源、土壤源及余热4类,对作为供能单元的4种热泵分别进行描述;按照储能类型,热泵可被分为储热(冷)及储电2种。热泵的使用实现了综合能源系统的低碳化及高效化运行,但在其应用过程中存在能源匹配以及优化运行等方面的问题。最后,对热泵在综合能源系统中的发展趋势进行了展望。
中图分类号:
孙健, 王寅武, 吴可欣, 陶建龙, 秦宇. 综合能源系统中热泵技术研究与应用[J]. 综合智慧能源, 2023, 45(4): 1-11.
SUN Jian, WANG Yinwu, WU Kexin, TAO Jianlong, QIN Yu. Research and application of heat pump technology in integrated energy systems[J]. Integrated Intelligent Energy, 2023, 45(4): 1-11.
[1] | 王永真, 韩恺, 赵军, 等. 地热发电在新型电力系统中的定位及参与模式[J]. 华电技术, 2021, 43(11): 58-65. |
WANG Yongzhen, HAN Kai, ZHAO Jun, et al. Orientation and participation mode of geothermal power generation in the new power system[J]. Huadian Technology, 2021, 43(11):58-65. | |
[2] | 余娜. 《BP世界能源统计年鉴》第70版发布[N]. 中国工业报, 2021-07-13(2). |
[3] | 李悦. 我国2021年风能太阳能资源年景公报发布[N]. 中国气象报,2022-04-29(1). |
[4] | 戴毅茹, 刘飞翔, 曾依浦. 基于光气电混合供能的区域综合能源系统优化配置研究[J]. 节能技术, 2022, 40(2):110-117. |
DAI Yiru, LIU Feixiang, ZENG Yipu, et al. Optimal deployment of solar PV-gas-electricity combined regional integrated energy system[J]. Energy Conservation Technology, 2022, 40(2):110-117. | |
[5] | 林达, 钱平, 张雪松, 等. 考虑储能寿命特性的综合能源系统经济-灵活多目标优化运行策略[J]. 浙江电力, 2022, 41(1):26-34. |
LIN Da, QIAN Ping, ZHANG Xuesong, et al. Multi-objective optimal operation strategy based on economy and flexibility of integrated energy system considering energy storage life characteristics[J]. Zhejiang Electric Power, 2022, 41(1):26-34. | |
[6] | 余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1):1-13. |
YU Xiaodan, XU Xiandong, CHEN Shuoyi, et al. A brief review to integrated energy system and energy internet[J]. Transactions of China Electrotechnical Society, 2016, 31(1):1-13. | |
[7] | 王永真, 康利改, 张靖, 等. 综合能源系统的发展历程、典型形态及未来趋势[J]. 太阳能学报, 2021, 42(8):84-95. |
WANG Yongzhen, KANG Ligai, ZHANG Jing, et al. Development history, typical form and future trend of Integrated Energy System[J]. Acta Energiae Solaris Sinica, 2021, 42(8):84-95. | |
[8] | 宫飞翔, 李德智, 田世明, 等. 综合能源系统关键技术综述与展望[J]. 可再生能源, 2019, 37(8):1229-1235. |
GONG Feixiang, LI Dezhi, TIAN Shiming, et al. Review and prospect of core technologies of integrated energy system[J]. Renewable Energy Resources, 2019, 37(8):1229-1235. | |
[9] | 洪文鹏, 滕达. 分布式冷热电联供系统集成及应用分析[J]. 东北电力大学学报, 2018, 38(5):54-63. |
HONG Wenpeng, TENG Da. Integration and applied analysis of distributed combined cooling heating and power system[J]. Journal of Northeast Electric Power University, 2018, 38(5):54-63. | |
[10] |
杨干, 翟晓强, 郑春元, 等. 国内冷热电联供系统现状和发展趋势[J]. 化工学报, 2015, 66(S2):1-9.
doi: 10.11949/j.issn.0438-1157.20150684 |
YANG Gan, ZHAI Xiaoqiang, ZHENG Chunyuan, et al. Current situation and development tendency of CCHP systems in China[J]. CIESC Journal, 2015, 66(S2):1-9.
doi: 10.11949/j.issn.0438-1157.20150684 |
|
[11] | 熊彧可, 李程明, 纪忠君, 等. 空气源热泵综述[J]. 现代制造技术与装备, 2021, 57(12):172-174. |
XIONG Yuke, LI Chengming, JI Zhongjun, et al. Overview of air source heat pump[J]. Modern Manufacturing Technology and Equipment, 2021, 57(12):172-174. | |
[12] | 陈健勇, 李浩, 陈颖, 等. 空气源热泵空调技术应用现状及发展前景[J]. 华电技术, 2021, 43(11):25-39. |
CHEN Jianyong, LI Hao, CHEN Ying, et al. Application status and perspectives of air-source heat pump air conditioning technology[J]. Huadian Technology, 2021, 43(11):25-39. | |
[13] |
余莉, 徐静静, 马兰芳, 等. 综合能源服务项目新增热泵系统的案例分析[J]. 综合智慧能源, 2022, 44(1):72-79.
doi: 10.3969/j.issn.2097-0706.2022.01.010 |
YU Li, XU Jingjing, MA Lanfang, et al. Case study on the integrated energy service project with newly installed heat pumps[J]. Integrated Intelligent Energy, 2022, 44(1): 72-79.
doi: 10.3969/j.issn.2097-0706.2022.01.010 |
|
[14] | 刘红梅, 马晓军, 夏惊涛, 等. 空气源热泵分布式能源站在寒冷地区的应用[J]. 建筑节能, 2019, 47(12):77-81,85. |
LIU Hongmei, MA Xiaojun, XIA Jingtao, et al. Air source heat pump distributed energy station applied in the cold zone[J]. Building Energy Efficiency, 2019, 47(12):77-81,85. | |
[15] | 王逊, 高峻, 邵敏. 空气源热泵与天然气分布式能源耦合系统的技术经济性能分析[J]. 节能, 2018, 37(11):34-39. |
WANG Xun, GAO Jun, SHAO Min. Performance analysis of air source heat pump and distributed energy coupling system[J]. Energy Conservation, 2018, 37(11):34-39. | |
[16] | 国家能源局. 关于促进地热能开发利用的若干意见(征求意见稿)[EB/OL].(2021-09-10)[2022-04-21].http://zfxxgk.nea.gov.cn/2021-09/10/c_1310210548.htm. |
[17] | 国家能源局. 关于因地制宜做好可再生能源供暖工作的通知[EB/OL].(2021-01-27)[2022-04-21].http://zfxxgk.nea.gov.cn/2021-01/27/c139728132.htm. |
[18] | 王贵玲, 杨轩, 马凌, 等. 地热能供热技术的应用现状及发展趋势[J]. 华电技术, 2021, 43(11):15-24. |
WANG Guiling, YANG Xuan, MA Ling, et al. Status quo and prospects of geothermal energy in heat supply[J]. Huadian Technology, 2021, 43(11): 15-24. | |
[19] | 刘丽芳, 李洪强, 康书硕, 等. 主动式热平衡NG-CHP与GSHP耦合分布式系统集成研究[J]. 中国电机工程学报, 2016, 36(12):3278-3285. |
LIU Lifang, LI Hongqiang, KANG Shushuo, et al. Research of a feasible distributed energy systemcoupling NG-CHP and GSHP based on active heat balance control mechanism[J]. Proeedings of the CSEE, 2016, 36(12): 3278-3285. | |
[20] | 徐玉珍. 夏热冬冷地区区域供能系统供冷季的运行策略研究[D]. 长沙: 湖南大学, 2015. |
XU Yuzhen. The optimization of operation strategy of district energy supplysystem during cooling season in hot summer and cold winter zone[D]. Changsha: Hunan University, 2015. | |
[21] | 郎麒麟. 基于土壤源热泵的宝鸡市某项目区域能源站规划研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
LANG Qilin. Research on district energy plan ofthe poroject in baoji based on ground heat pump[D]. Harbin: Harbin Institute of Technology, 2019. | |
[22] | 朱兆虎, 侯咏梅. 北京市某科技商务中心区域综合能源系统规划[J]. 煤气与热力, 2019, 39(1):1-7. |
ZHU Zhaohu, HOU Yongmei. Planning of regional integrated energy system of a science and technology business center in Beijing[J]. Gas & Heat, 2019, 39(1):1-7. | |
[23] | 王传伟. 浅谈水源热泵技术及应用现状[J]. 科技创新与应用, 2012(30):219. |
[24] | 龙虹毓, 徐瑞林, 何国军, 等. 基于热电风电协调调度的系统日调峰能力分析[J]. 电力自动化设备, 2013, 33(4):30-34,54. |
LONG Hongyu, XU Ruilin, HE Guojun, et al. Analysis of peak-load regulation capability based on combined dispatch of wind power and thermal power[J]. Electric Power Automation Equipment, 2013, 33(4):30-34,54. | |
[25] | 俞春尧. 区域能源系统一次能源梯级利用优化设计方法[J]. 暖通空调, 2018, 48(7):71-75,54. |
YU Chunxiao. Optimal design method for primary energy cascade utilization in a district energy system[J]. Heating Ventilating & Air Conditioning, 2018, 48(07):71-75,54. | |
[26] |
徐恒志, 周博文, 李广地, 等. 含水源热泵的区域综合能源系统低碳运行优化研究[J]. 综合智慧能源, 2022, 44(1):39-48.
doi: 10.3969/j.issn.2097-0706.2022.01.006 |
XU Hengzhi, ZHOU Bowen, LI Guangdi, et al. Research on optimal operation of the regional integrated energy system with water-source heat pumps[J]. Integrated Intelligent Energy, 2022, 44(1): 39-48.
doi: 10.3969/j.issn.2097-0706.2022.01.006 |
|
[27] | 祝侃, 许超. 工业余热-新型建筑替代能源的应用分析[J]. 建筑节能, 2017, 45(1):30-34. |
ZHU Kan, XU Chao. Application of the new alternative building energy: Industrial waste heat[J]. Building Energy Efficiency, 2017, 45(1):30-34. | |
[28] | 何雅玲. 工业余热高效综合利用的重大共性基础问题研究[J]. 科学通报, 2016, 61(17):1856-1857. |
HE Yaling. Study on the significant common basics problems of efficient and comprehensive utilization of industrial waste heat[J]. Chinese Science Bulletin, 2016, 61(17):1856-1857. | |
[29] | 孙健, 霍成, 马世财, 等. 基于电动热泵的天然气锅炉余热深度回收研究[J]. 中国电机工程学报, 2022, 42(11):4060-4069. |
SUN Jian, HUO Cheng, MA Shicai, et al. Research on deep waste heat recovery of natural gas boiler based on electric heat pump[J]. Proceedings of the CSEE, 2022, 42(11):4060-4069. | |
[30] | 孙健, 马世财, 霍成, 等. 耦合热泵换热器的原理及变工况性能研究[J]. 工程热物理学报, 2021, 42(1):9-15. |
SUN Jian, MA Shicai, HUO Cheng, et al. Study on a hybrid heat exchanger based on absorption and compression cycles[J]. Journal of Engineering Thermophysics, 2021, 42(1):9-15. | |
[31] | 刘媛媛, 隋军, 刘浩. 燃煤热电厂串并联耦合吸收式热泵供热系统研究[J]. 中国电机工程学报, 2016, 36(22):6148-6155. |
LIU Yuanyuan, SUI Jun, LIU Hao. Research on heating system of serial-parallel coupling absorption heat pump for coal fired power plants[J]. Proceedings of the CSEE, 2016, 36(22): 6148-6155. | |
[32] | 张春青, 沈致和, 吴亚平. 第二类吸收式热泵在分布式能源系统中的应用[J]. 机电信息, 2013(13):95-97. |
ZHANG Chunqing, SHEN Zhihe, WU Yaping. Application of absorption heat transformer on distributed energy system[J]. Mechanical and Electrical Information, 2013(13):95-97. | |
[33] | 郭琛良, 张德虎, 许昌, 等. 配合风电消纳的综合储能系统经济容量优化研究[J]. 可再生能源, 2022, 40(5):660-666. |
GUO Chenliang, ZHANG Dehu, XU Chang, et al. Study on economic capacity optimization of comprehensive energy storage system combined with wind power consumption[J]. Renewable Energy Resources, 2022, 40(5):660-666. | |
[34] | 刘冠伟. 能源转型背景下的储能技术发展前景[J]. 中外能源, 2017, 22(12):69-78. |
LIU Guanwei. Development prospect of energy storage technology in the context of energy transformation[J]. Sino-Global Energy, 2017, 22(12):69-78. | |
[35] | 汪翔, 陈海生, 徐玉杰, 等. 储热技术研究进展与趋势[J]. 科学通报, 2017, 62(15):1602-1610. |
WANG Xiang, CHEN Haisheng, XU Yujie, et al. Advances and prospects in thermal energy storage: A critical review[J]. Chinese Science Bulletin, 2017, 62(15):1602-1610. | |
[36] | 凌浩恕, 何京东, 徐玉杰, 等. 清洁供暖储热技术现状与趋势[J]. 储能科学与技术, 2020, 9(3):861-868. |
LING Haoshu, HE Jingdong, XU Yujie, et al. Status and prospect of thermal energy storage technology for clean heating[J]. Energy Storage Science and Technology, 2020, 9(3):861-868. | |
[37] | 姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9): 2746-2771. |
JIANG Zhu, ZOU Boyang, CONG Lin, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771. | |
[38] | 孙健, 戈志华, 杜小泽, 等. 一种柔性超级热泵:CN216347158U, 2022-04-19[P]. 2021-05-18. |
[39] | 王含, 郑新, 张金龙. 储能式地热能综合能源系统效益分析[J]. 建筑节能, 2019, 47(3):60-64,80. |
WANG Han, ZHENG Xin, ZHANG Jinlong. Benefit analysis of integrated energy systems using geothermal energy-stored in buildings[J]. Building Energy Efficiency, 2019, 47(3):60-64,80. | |
[40] | 王俊杰, 郭霄宇, 王含, 等. 冷热双蓄与热泵耦合的综合能源系统经济效益分析[J]. 分布式能源, 2020, 5(5):64-70. |
WANG Junjie, GUO Xiaoyu, WANG Han, et al. Economic benefit analysis of integrated energy system coupled with cold and heat storage and heat pump[J]. Distributed Energy, 2020, 5(5):64-70. | |
[41] | 孟明, 薛宛辰, 商聪. 含地源热泵与混合储能的区域能源系统协同调度[J]. 华北电力大学学报(自然科学版), 2022, 49(1):68-80. |
MENG Ming, XUE Wanchen, SHANG Cong, et al. Coordinated scheduling of regional energy system with ground source heat pump and hybrid energy storage[J]. Journal of North China Electric Power University: Natural Science Edition, 2022, 49(1):68-80. | |
[42] | 张琼, 王亮, 徐玉杰, 陈海生. 热泵储电技术研究进展[J]. 中国电机工程学报, 2018, 38(1):178-185. |
ZHANG Qiong, WANG Liang, XU Yujie, et al. Research progress in pumped heat electricity storage system: A review[J]. Proceedings of the CSEE, 2018, 38(1): 178-185. | |
[43] | 张涵, 王亮, 林曦鹏, 等. 基于逆/正布雷顿循环的热泵储电系统性能[J]. 储能科学与技术, 2021, 10(5):1796-1805. |
ZHANG Han, WANG Liang, LIN Xipeng, et al. Performance of pumped thermal electricity storage system based on reverse/forward Brayton cycle[J]. Energy Storage Science and Technology, 2021, 10(5):1796-1805. | |
[44] |
CHEN Yuzhu, XU Zhicheng, WANG Jun, et al. Multi-objective optimization of an integrated energy system against energy, supply-demand matching and exergo-environmental cost over the whole life-cycle[J]. Energy Conversion and Management, 2022, 254:115203.
doi: 10.1016/j.enconman.2021.115203 |
[45] | SONG Y, HU W, ZHANG Z, et al. Optimal operation and location of heat pumps in the integrated energy systems[C]// 2017 IEEE Conference on Energy Internet and Energy System Integration(EI2). IEEE, 2017. |
[46] | 殷子彦, 戴叶, 徐博, 等. 新型热泵储电系统的设计方案及其性能分析[J]. 可再生能源, 2019, 37(5):784-790. |
YIN Ziyan, DAI Ye, XU Bo, et al. New design scheme of pumped thermal electricity system and its performance analysis[J]. Renewable Energy Resources, 2019, 37(5):784-790. | |
[47] | 圣力, 薛新杰, 孛衍君, 等. 基于相变储能介质热泵储电系统的模拟与分析[J]. 储能科学与技术, 2022, 11(11):3649-3657. |
SHENG Li, XUE Xinjie, BO Yanjun, et al. Simulation and analysis of pumped thermal electricity storage system based on phase change energy storage medium[J]. Energy Storage Science and Technology, 2022, 11(11):3649-3657. | |
[48] |
KLYAPOVSKIY S, YOU S, CAI H, et al. Integrated planning of a large-scale heat pump in view of heat and power networks[J]. IEEE Transactions on Industry Applications, 2019, 55(1):5-15.
doi: 10.1109/TIA.2018.2864114 |
[1] | 李菲菲, 徐绘薇, 崔金栋. 基于STIRPAT模型的吉林省石化行业碳排放影响因素研究[J]. 综合智慧能源, 2024, 46(8): 12-19. |
[2] | 李菲菲, 王舒泓, 崔金栋. 全生命周期视角下汽车产业碳排放影响因素的研究——以吉林省为例[J]. 综合智慧能源, 2024, 46(8): 20-27. |
[3] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[4] | 何方波, 裴力耕, 郑睿, 范康健, 张晓曼, 李更丰. “源网荷储”协同助力陕西省新型电力系统建设[J]. 综合智慧能源, 2024, 46(7): 40-46. |
[5] | 徐智帆, 李华森, 李文院, 余凯. 基于递归小脑模型神经网络和卡尔曼滤波器的锂电池荷电状态预测[J]. 综合智慧能源, 2024, 46(7): 81-86. |
[6] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[7] | 王林, 孔小民, 周忠玉, 刘建平, 王晓东, 张宁. 云储能模式下的配电网分布式光伏-储能无功优化方法[J]. 综合智慧能源, 2024, 46(6): 44-53. |
[8] | 张勋祥, 吴杰康, 孙烨桦, 彭其坚. 平抑海上风电波动的混合储能系统容量优化配置[J]. 综合智慧能源, 2024, 46(6): 54-65. |
[9] | 龚钢军, 王路遥, 常卓越, 柳旭, 邢汇笛. 基于能源枢纽的综合能源信息物理系统安全防护架构研究[J]. 综合智慧能源, 2024, 46(5): 65-72. |
[10] | 李云, 周世杰, 胡哲千, 梁均原, 肖雷鸣. 基于NSGA-Ⅱ-WPA的综合能源系统多目标优化调度[J]. 综合智慧能源, 2024, 46(4): 1-9. |
[11] | 史明明, 朱睿, 刘瑞煌. 交直流电力系统与供热系统联合经济调度[J]. 综合智慧能源, 2024, 46(4): 10-16. |
[12] | 董强, 徐君, 方东平, 方丽娟, 陈妍琼. 基于光伏出力特性的分布式光储系统优化调度策略[J]. 综合智慧能源, 2024, 46(4): 17-23. |
[13] | 陈勇, 肖雷鸣, 王井南, 吴健. 基于场景扩充的低碳综合能源系统高可靠性容量规划方法[J]. 综合智慧能源, 2024, 46(4): 24-33. |
[14] | 汤梓涵, 王帅杰, 鞠振河, 雷志奇. 光伏/光热耦合空气源热泵系统性能优化[J]. 综合智慧能源, 2024, 46(4): 34-41. |
[15] | 王京龙, 王晖, 杨野, 郑颖颖. 考虑多重不确定性的电-热-气综合能源系统协同优化方法[J]. 综合智慧能源, 2024, 46(4): 42-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||