综合智慧能源 ›› 2025, Vol. 47 ›› Issue (4): 23-32.doi: 10.3969/j.issn.2097-0706.2025.04.002

• 博弈论与电力市场决策 • 上一篇    下一篇

考虑疲劳损伤的多级前馈神经网络-序列二次规划的风电场降噪优化

黄琳杰(), 谢芷珊(), 廖永兴(), 殷林飞*()   

  1. 广西大学 电气工程学院, 南宁 530004
  • 收稿日期:2024-10-08 修回日期:2024-10-25 出版日期:2025-02-27
  • 通讯作者: *殷林飞(1990),男,副教授,博士生导师,博士,从事电力系统运行与分析、人工智能在电力系统的应用等方面的研究,yinlinfei@gxu.edu.cn
  • 作者简介:黄琳杰(2001),男,硕士生,从事电力系统运行与分析方面的研究,ziyu4268@163.com
    谢芷珊(2003),女,硕士生,从事智能控制技术方面的研究,xzs17773746575@163.com
    廖永兴(1998),男,硕士生,从事智能控制技术方面的研究,gxueelyxms@163.com
  • 基金资助:
    国家自然科学基金项目(62463001)

Noise reduction optimization of wind farms considering fatigue damage using a multi-layer feedforward neural network-sequential quadratic programming approach

HUANG Linjie(), XIE Zhishan(), LIAO Yongxing(), YIN Linfei*()   

  1. School of Electrical Engineering, Guangxi University, Nanning 530004, China
  • Received:2024-10-08 Revised:2024-10-25 Published:2025-02-27
  • Supported by:
    National Natural Science Foundation of China(62463001)

摘要:

针对风机在实际运行过程中由于调度指令与风速不匹配导致工件出现应力过大,从而积累疲劳损伤的问题提出优化方案。考虑到传感器将采集到的数据经远距离输送,难以避免受到噪声和延迟的干扰,通过多个前馈神经网络进行组合,形成一个7级实时降噪前馈神经网络,对采集到的信号先进行降噪再送入控制器进行下一步分析;为验证7级实时降噪前馈神经网络在应对复杂场景下的鲁棒性,用额外的含噪含延迟数据对其进行检验,经检验,设计的降噪神经网络满足设计要求。为实现实时量化风机工件的累积疲劳损伤值,对三点式雨流计数法进行改进。基于序列二次规划(SQP)算法对风机的调度指令进行优化,优化后的调度指令更加合理,整体累积疲劳损伤值相较于优化前更加均匀,避免了单一风机累积疲劳损伤值过大的情况。

关键词: 前馈神经网络, 7级实时降噪神经网络, 雨流计数法, 功率分配优化, SQP算法, 风电场降噪优化

Abstract:

An optimization scheme was developed to address the issue of excessive stress accumulation and fatigue damage in wind turbine components caused by mismatched dispatch instructions and wind speed during actual operation. To mitigate the unavoidable interference of noise and delay inherent in long-distance sensor data transmission, a seven-level real-time noise reduction feedforward neural network was developed by combining multiple feedforward neural networks. The collected signals were first denoised before being fed into the controller for further analysis. To verify the robustness of the seven-level real-time noise reduction feedforward neural network under complex scenarios, additional noisy and delayed data were used for testing. The results confirmed that the designed noise reduction neural network met the design requirements. To achieve real-time quantification of the cumulative fatigue damage in wind turbine components, the three-point rainflow counting method was improved. The dispatch instructions for wind turbines were optimized using the Sequential Quadratic Programming (SQP) algorithm. The optimized dispatch instructions were more reasonable, leading to a more uniform distribution of cumulative fatigue damage across turbines compared to pre-optimization. This avoids the excessive accumulation of fatigue damage in individual turbines.

Key words: feedforward neural network, seven-level real-time noise reduction neural network, rainflow counting method, power allocation optimization, SQP algorithm, Optimization of noise mitigation in wind farms

中图分类号: