综合智慧能源 ›› 2025, Vol. 47 ›› Issue (4): 33-40.doi: 10.3969/j.issn.2097-0706.2025.04.003

• 博弈论与电力市场决策 • 上一篇    下一篇

基于传播模型与神经网络的输变电工程造价分析与预测方法研究

陆汉东1,2(), 方明1,2,*(), 刘刚刚1(), 周妍1()   

  1. 1 广东省电力建设定额站, 广州 510600
    2 广东电网有限责任公司 广州供电局,广州 510600
  • 收稿日期:2024-08-05 修回日期:2024-08-27 出版日期:2024-12-25
  • 通讯作者: *方明(1980),男,高级经济师,硕士,从事电力技术经济管理、工程造价咨询方面的研究,25238188@qq.com
  • 作者简介:陆汉东(1976),男,工程师,从事电力工程造价管理方面的研究,22138442@qq.com
    刘刚刚(1979),男,高级经济师,硕士,从事电力工程造价方面的研究,6957722@qq.com
    周妍(1979),女,高级经济师,硕士,从事电力工程造价评审、项目咨询及经济评价分析等方面的研究,15989298098@139.com
  • 基金资助:
    南方电网定额站研究项目(2023-10-15)

Research on cost analysis and prediction methods for power transmission and transformation projects based on propagation models and neural networks

LU Handong1,2(), FANG Ming1,2,*(), LIU Ganggang1(), ZHOU Yan1()   

  1. 1 Guangdong Power Construction Quota Station, Guangzhou 510600, China
    2 Guangzhou Power Supply Bureau of Guangdong Grid Company Limited, Guangzhou 510600, China
  • Received:2024-08-05 Revised:2024-08-27 Published:2024-12-25
  • Supported by:
    China Southern Power Grid Quota Station Project(2023-10-15)

摘要:

在现代电力系统中,准确预测输变电工程的造价对项目规划和实施至关重要。传统预测方法在处理时间序列和结构分析等定量预测问题时存在精度低和自适应能力差的问题。为了改进预测精度,提出了一种基于易感者-感染者-治愈者(SIR)传染病模型和神经网络的输变电工程造价预测方法。该方法利用SIR模型对可变费用进行动态建模,并通过非线性最小二乘法拟合模型参数。将历史数据和模型参数输入前馈神经网络(FNN),通过训练和计算得到预测结果。最终,采用贝叶斯优化算法(BOA)对FNN的超参数进行优化,完成BOA-FNN模型训练。研究结果表明,该预测方法的平均绝对百分比误差(MAPE)低至0.430 7%,稳定可靠地提高了预测精度。

关键词: 输变电工程, 工程造价, 传染病模型, SIR模型, 前馈神经网络, 贝叶斯优化算法, 工程投资预测

Abstract:

Accurate prediction on the costs of transmission and substation projects is crucial for the planning and implementation of modern power systems. Traditional prediction methods often suffer from low accuracy and poor adaptability while handling quantitative prediction problems such as time series and structural analyses. To improve prediction accuracy, a cost prediction method for transmission and substation projects was proposed based on the Susceptible-Infected-Removed (SIR) epidemic model and neural networks. This method utilized the SIR model for dynamic modeling of variable costs, and fitted the model parameters with nonlinear least squares. Historical data and model parameters were then input into a Feedforward Neural Network(FNN), and predictions were obtained through training and computation. Finally, Bayesian optimization algorithm (BOA) was employed to optimize the hyperparameters of the FNN, completing the BOA-FNN model training. The study results indicated that this prediction method achieved a mean absolute percentage error (MAPE) as low as 0.430 7%, significantly enhancing prediction accuracy with stability and reliability.

Key words: transmission and transformation engineering, project cost, epidemic model, SIR model, feedforward neural network (FNN), Bayesian optimization algorithm(BOA), project investment prediction

中图分类号: