综合智慧能源 ›› 2025, Vol. 47 ›› Issue (4): 41-62.doi: 10.3969/j.issn.2097-0706.2025.04.004
收稿日期:
2024-10-08
修回日期:
2024-12-26
出版日期:
2025-03-03
通讯作者:
*程乐峰(1990),男,副教授,硕士生导师,博士,从事电力系统优化运行与控制、博弈论、电力市场等方面的研究,chenglefeng@gzhu.edu.cn。作者简介:
冯剑冰(1981),男,正高级工程师,博士,从事地铁供电系统智能控制、地铁柔性直流供电系统等方面的研究,fengjianbing@163.com;基金资助:
FENG Jianbing1,2(), YU Tao1(
), CHENG Lefeng3,*(
)
Received:
2024-10-08
Revised:
2024-12-26
Published:
2025-03-03
Supported by:
摘要:
地铁作为城市公共交通的重要组成部分,其供电系统的稳定性和可靠性至关重要。不同于传统高压输送电网,地铁供电系统运行于封闭的交直流混合网络中,需应对负荷高动态变化、供电链路短但密集等独特挑战。自愈控制通过实时监测、智能诊断和自动恢复,可确保供电系统在故障发生时能够安全、连续运行。综述了供电系统自愈控制方法的研究进展,重点分析了自愈控制架构体系、智能优化与故障诊断方法;结合地铁供电系统的特性,探讨了多智能体系统(MAS)和IEC 61850通信标准在自愈控制中的应用;针对未来分布式能源接入地铁供电系统的趋势,提出了一系列自愈控制策略,有效降低对集中式电力供应的依赖;探讨了基于大数据、智能算法和分布式控制的新研究方向,为地铁供电系统的自愈控制提供关键技术支撑。
中图分类号:
冯剑冰, 余涛, 程乐峰. 自愈控制方法及其在地铁供电系统中的应用研究与展望[J]. 综合智慧能源, 2025, 47(4): 41-62.
FENG Jianbing, YU Tao, CHENG Lefeng. Research and prospects of self-healing control methods and their applications in metro power supply systems[J]. Integrated Intelligent Energy, 2025, 47(4): 41-62.
表2
配电网故障恢复的目标函数和约束条件
项目 | 函数 | 特征和复杂度 | |
---|---|---|---|
目标函数 | 负荷损失 最小 | λ1,λ2分别为一级、二级负载权重系数; zi,zj分别为第i个一级负载和第j个二级负载的状态变量 | |
开关动作 最少 | zi=1为开关变化; zi=0为开关不变 | ||
网损最小 | Ri,Pi,Qi,Ui分别为支路i的阻抗、有功功率、无功功率、电压; N为系统支路数 | ||
约束条件 | 支路容量 | max为上限; min为下限; g为恢复拓扑; G为辐射拓扑集 | |
变压器容量 | |||
节点电压 | |||
节点电流 | |||
辐射结构 |
[1] | 中国城市轨道交通协会. 城市轨道交通2023年度统计和分析报告[EB/OL].(2024-03-29)[2024-10-01]. https://www.camet.org.cn. |
[2] |
秦博宇, 王宏振, 王召健, 等. 地下空间支撑下的城市轨道交通和能源系统融合发展研究[J]. 中国工程科学, 2023, 25(1): 45-59.
doi: 10.15302/J-SSCAE-2023.01.014 |
QIN Boyu, WANG Hongzhen, WANG Zhaojian, et al. Integrated development of urban rail transit and energy systems supported by underground space[J]. Strategic Study of CAE, 2023, 25(1): 45-59.
doi: 10.15302/J-SSCAE-2023.01.014 |
|
[3] | 杜芳. 地铁机车建模及直流牵引供电系统故障分析[D]. 北京: 北京交通大学, 2010. |
DU Fang. Modeling of metro locomotive and fault analysis of DC traction power supply system[D]. Beijing: Beijing Jiaotong University, 2010. | |
[4] | 宋晓明. 城市轨道交通牵引供电系统故障定位研究[D]. 北京: 北京交通大学, 2015. |
SONG Xiaoming. Research on fault location of traction power supply system in urban rail transit[D]. Beijing: Beijing Jiaotong University, 2015. | |
[5] | 张润凡, 别朝红. 主动配电网的动态虚拟微电网群分布式群级协同控制[J]. 电力系统自动化, 2022, 46(14): 55-62. |
ZHANG Runfan, BIE Zhaohong. Distributed cluster-level cooperative control of dynamic virtual microgrid cluster for active distribution network[J]. Automation of Electric Power Systems, 2022, 46(14): 55-62. | |
[6] | 魏荣耀, 时光, 庄琨, 等. 基于GPS时间同步的地铁直流牵引供电系统故障测距研究[J]. 船电技术, 2023, 43(8): 85-88. |
WEI Rongyao, SHI Guang, ZHUANG Kun, et al. Research on fault location of subway DC traction power supply system based on GPS time synchronization[J]. Marine Electric & Electronic Engineering, 2023, 43(8): 85-88. | |
[7] | 金雪丰, 李正茂, 胡振. 基于时域微分的地铁直流供电系统故障定位仿真[J]. 船电技术, 2017, 37(4): 67-70. |
JIN Xuefeng, LI Zhengmao, HU Zhen. Simulation of fault location for subway DC power supply system based on time domain differential[J]. Marine Electric & Electronic Engineering, 2017, 37(4): 67-70. | |
[8] | 裴卫卫. 地铁牵引供电系统的可靠性研究[D]. 南京: 南京理工大学, 2019. |
PEI Weiwei. Study on reliability of subway traction power supply system[D]. Nanjing: Nanjing University of Science and Technology, 2019. | |
[9] | 周骏麟. 地铁牵引供电系统可靠性在线分析研究[D]. 上海: 上海交通大学, 2012. |
ZHOU Junlin. On-line reliability analysis of subway traction power supply system[D]. Shanghai: Shanghai Jiao Tong University, 2012. | |
[10] | 刘永生, 魏巍, 王旭, 等. 城市轨道交通交流供电系统快速自愈方案研究[J]. 电气化铁道, 2018, 29(5): 61-64. |
LIU Yongsheng, WEI Wei, WANG Xu, et al. Researches of quick self-healing scheme for AC power supply system of urban mass transit[J]. Electric Railway, 2018, 29(5): 61-64. | |
[11] | 仇龙刚. 直流牵引供电系统故障分析与保护方法研究[D]. 成都: 西南交通大学, 2015. |
QIU Longgang. Fault analysis and protection method research of DC traction power supply system[D]. Chengdu: Southwest Jiaotong University, 2015. | |
[12] | National Energy Technology Laboratory. The modern grid initative[R]. US: Department of Energy, 2008: 26-30. |
[13] | LIU C, JUNG J, HEYDT G T, et al. The strategic power infrastructure defense(SPID) system[J]. IEEE Control Systems Magazine, 2000, 20(4): 40-52. |
[14] | 张瑶, 王傲寒, 张宏. 中国智能电网发展综述[J]. 电力系统保护与控制, 2021, 49(5): 180-187. |
ZHANG Yao, WANG Aohan, ZHANG Hong. Overview of smart grid development in China[J]. Power System Protection and Control, 2021, 49(5): 180-187. | |
[15] | 李天友. 智能配电网自愈功能及其效益评价模型研究[D]. 北京: 华北电力大学, 2012. |
LI Tianyou. Research on self-healing function and benefit evaluation model of intelligent distribution network[D]. Beijing: North China Electric Power University, 2012. | |
[16] | AMIN M. Toward self-healing energy infrastructure systems[J]. IEEE Computer Applications in Power, 2001, 14(1):20-28. |
[17] | SARIDIS G M. 随机系统的自组织控制[M]. 郑应平,译. 北京: 科学出版社, 1984. |
[18] | ROHAMA A, MOHAMED AHMED ALI A, HEGAZY R, et al. DC energy hubs for integration of community DERs, EVs, and subway systems[J]. Sustainability, 2022, 14(3): 1558. |
[19] | AHMAD R, SINGH J, MOHAMED A A. Distributed energy resource integration with electrical railway systems: NYC case study[J]. Transportation Electrification: Breakthroughs in Electrified Vehicles, Aircraft, Rolling Stock, and Watercraft, 2022: 399-416. |
[20] | ZHONG Z M, ZHANG Y X, SHEN H, et al. Optimal planning of distributed photovoltaic generation for the traction power supply system of high-speed railway[J]. Journal of Cleaner Production, 2020, 263: 121394. |
[21] | CHENG P, KONG H W, MA J, et al. Overview of resilient traction power supply systems in railways with interconnected microgrid[J]. CSEE Journal of Power and Energy Systems, 2020, 7(5): 1122-1132. |
[22] | POPESCU M, BITOLEANU A. A review of the energy efficiency improvement in DC railway systems[J]. Energies, 2019, 12(6): 12061092. |
[23] | 余昆. 基于分层递阶控制理论的城市电网自愈控制研究[D]. 杭州: 浙江大学, 2011. |
YU Kun. Research on self-healing control of urban power grid based on hierarchical control theory[D]. Hangzhou: Zhejiang University, 2011. | |
[24] | 刘秋华, 董丹丹, 孟珊珊, 等. 智能配电网自愈控制及其关键技术研究[J]. 南京工程学院学报(自然科学版), 2015, 13(3): 31-36. |
LIU Qiuhua, DONG Dandan, MENG Shanshan, et al. Research on self-healing control and its key technology on smart distribution grid[J]. Journal of Nanjing Institute of Technology(Natural Science Edition), 2015, 13(3):31-36. | |
[25] | 郭志忠. 电网自愈控制方案[J]. 电力系统自动化, 2005, 29(10): 85-91. |
GUO Zhizhong. Scheme of self-healing control frame of power grid[J]. Automation of Electric Power Systems, 2005, 29(10): 85-91. | |
[26] | ZHOU X S, REN T X, MA Y J, et al. An overview of self-healing control in smart distribution grid[C]// Proceedings of the 36th Chinese Control Conference. IEEE, 2017: 10652-10656. |
[27] | 康嘉斌. 基于多智能体容错的智能配电网自愈控制方法研究[D]. 南昌: 华东交通大学, 2017. |
KANG Jiabin. Research on self-healing control method of intelligent distribution network based on multi-agent fault tolerance[D]. Nanchang: East China Jiaotong University, 2017. | |
[28] | 常诚. 智能配电网自愈技术研究与应用[D]. 北京: 华北电力大学, 2017. |
CHANG Cheng. Research and application of self-healing technology in intelligent distribution network[D]. Beijing: North China Electric Power University, 2017. | |
[29] | 邵彬. 基于Multi-agent system的智能配电网自愈控制研究[D]. 成都: 西南交通大学, 2015. |
SHAO Bin. Research on self-healing control of intelligent distribution network based on Multi-agent system[D]. Chengdu: Southwest Jiaotong University, 2015. | |
[30] | LIU H M, CHEN X Y, YU K, et al. The control and analysis of self-healing urban power grid[J]. IEEE Transactions on Smart Grid, 2012,3: 1119-1129. |
[31] | 胡雯. 自愈机制下含微电网的配电网重构方法研究[D]. 武汉: 武汉大学, 2014. |
HU Wen. Research on reconfiguration method of distribution network with microgrid under self-healing mechanism[D]. Wuhan: Wuhan University, 2014. | |
[32] | 肖鸣晖. 分布式电源广泛接入的分散自治型配电网自愈模式研究[D]. 广州: 华南理工大学, 2017. |
XIAO Minghui. Research on self-healing mode of decentralized autonomous distribution network with widely connected distributed power sources[D]. Guangzhou: South China University of Technology, 2017. | |
[33] | 李春风. 基于multi-agent的智能配电网自愈系统研究[D]. 湘潭: 湖南科技大学, 2012. |
LI Chunfeng. Research on self-healing system of intelligent distribution network based on multi-agent[D]. Xiangtan: Hunan University of Science and Technology, 2012. | |
[34] | 董志辉, 林凌雪, 管霖, 等. 基于多代理技术的有源配电网供电恢复策略[J]. 电力自动化设备, 2019, 39(5): 22-29. |
DONG Zhihui, LIN Lingxue, GUAN Lin, et al. Service restoration strategy of active distribution network based on multi-agent technology[J]. Electric Power Automation Equipment, 2019, 39(5): 22-29. | |
[35] | 魏鑫. 考虑分布式电源的微电网自愈控制技术研究[D]. 济南: 山东大学, 2019. |
WEI Xin. Research on self-healing control technology of microgrid considering distributed generation[D]. Jinan: Shandong University, 2019. | |
[36] | 刘新东, 李伟华, 朱勇, 等. 基于多代理技术的分布式电网自愈控制策略研究[J]. 电力系统保护与控制, 2012, 40(17): 116-120. |
LIU Xindong, LI Weihua, ZHU Yong, et al. Research on self-healing control of distributed networks based on multi-agent technology[J]. Power System Protection and Control, 2012, 40(17): 116-120. | |
[37] | 赵向阳. 主动配电网的自愈控制策略研究[D]. 上海: 上海电力学院, 2018. |
ZHAO Xiangyang. Research on self-healing control strategy of active distribution network[D]. Shanghai: Shanghai University of Electric Power, 2018. | |
[38] | 吴悦华. 有源配电网分布式故障自愈方案与系统开发[D]. 济南: 山东大学, 2019. |
WU Yuehua. Distributed fault self-healing scheme and system development of active distribution network[D]. Jinan: Shandong University, 2019. | |
[39] | 周力. 有源配电网自愈技术研究[D]. 南京: 东南大学, 2017. |
ZHOU Li. Research on self-healing technology of active distribution network[D]. Nanjing: Southeast University, 2017. | |
[40] | AREFIFAR S A, MOHAMED A R I, EL-FOULY T H M. Comprehensive operational planning framework for self-healing control actions in smart distribution grids[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4192-4200. |
[41] | 谢忠志, 李曙生. 基于分层多代理的配电网故障自愈恢复系统[J]. 自动化与仪器仪表, 2022(5): 146-150. |
XIE Zhongzhi, LI Shusheng. Self-recovery system based on layered multiple agent[J]. Automation & Instrumentation, 2022(5): 146-150. | |
[42] | 林成, 钟文强, 朱鹏, 等. 基于分层多代理的配电网故障自愈复电系统[J]. 自动化与仪器仪表, 2022(7): 193-197. |
LIN Cheng, ZHONG Wenqiang, ZHU Peng, et al. Self-recovery system based on layered multi-agent[J]. Automation & Instrumentation, 2022(7): 193-197. | |
[43] | POUYA J, ABHINAV S, FERDINANADA P, et al. Implementation of an Agent-based distributed FLISR algorithm using IEC 61850 in active distribution grids[C]// 4th International Conference on Renewable Energy Research and Applications. IEEE, 2015: 606-611. |
[44] | ABDULFETAH A S, MOHAMMED W. Multiagent systems application for the smart grid protection[J]. Renewable and Sustainable Energy Reviews, 2021,149:111352 |
[45] | ERIKSSON M, ARMENDARIZ M, VASILENKO O O, et al. Multiagent-based distribution automation solution for self-healing grids[J]. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2620-2628. |
[46] | 朱智勇. 基于大数据和多代理的含IBDGs主动配电网故障自愈系统研究[D]. 湘潭: 湘潭大学, 2017. |
ZHU Zhiyong. Research on fault self-healing system of active distribution network with IBDGs based on big data and multi-agent[D]. Xiangtan: Xiangtan University, 2017. | |
[47] | 刘丹丹. 基于多代理技术的主动配电网故障自愈系统研究[D]. 湘潭: 湘潭大学, 2015. |
LIU Dandan. Research on fault self-healing system of active distribution network based on multi-agent technology[D]. Xiangtan: Xiangtan University, 2015. | |
[48] | LING W S, LIU D, YANG D X, et al. The situation and trends of feeder automation in China[J]. Renewable and Sustainable Energy Reviews, 2015: 1138-1147. |
[49] | KOCH-CIOBOTARU C, MONADI M, LUNA A, et al. Distributed FLISR algorithm for smart grid self-reconfiguration based on IEC 61850[C]// 3rd International Conference on Renewable Energy Research and Applications. IEEE, 2014: 418-423. |
[50] | ZHOU J, WANG L, LIU M X, et al. Research on quick distributed feeder automation for fast fault isolation/self-healing in distribution network[C]// 2019 IEEE PES Innovative Smart Grid Technologies Asia. IEEE, 2019: 202-206. |
[51] | 陈锦龙, 杜江, 郭萌, 等. 基于智能分布式馈线自动化的配电网故障快速自愈方法[J]. 机械与电子, 2021, 39(12): 3-7. |
CHEN Jinlong, DU Jiang, GUO Meng, et al. Fast fault self-healing of distribution network based on intelligent distributed feeder automation[J]. Machinery & Electronics, 2021, 39(12): 3-7. | |
[52] | 王潘潘. 京张高铁智能牵引供电系统自愈重构方案研究[J]. 电气化铁道, 2020, 31(S2): 126-131. |
WANG Panpan. Research on self-healing reconstruction scheme of intelligent traction power supply system for Beijing — Zhangjiakou high-speed railway[J]. Electric Railway, 2020, 31(S2): 126-131. | |
[53] | 井友刚. 电气化铁路广域保护系统自愈重构功能研究与应用[J]. 电气化铁道, 2020, 31(3): 12-15, 32. |
JING Yougang. Study on and application of self-healing reconfiguration function of wide area protection system for electrified railway[J]. Electric Railway, 2020, 31(3): 12-15, 32. | |
[54] | 刘长利. 高速铁路智能牵引供电系统的快速自愈重构技术研究[J]. 铁道标准设计, 2020, 64(4): 162-167. |
LIU Changli. Study on speediness self-healing refactoring technology of high-speed railway intelligent traction power supply system[J]. Railway Standard Design, 2020, 64(4): 162-167. | |
[55] | 余龙. 城市轨道交通中压环网继电保护方案的优化设计[D]. 广州: 华南理工大学, 2010. |
YU Long. Optimal design of relay protection scheme for medium voltage ring network in urban rail transit[D]. Guangzhou: South China University of Technology, 2010. | |
[56] | 陶维青, 杨刚, 丁明, 等. 改进模因算法在含DG配电网故障定位中的应用[J]. 电子测量与仪器学报, 2016, 30(2): 265-273. |
TAO Weiqing, YANG Gang, DING Ming, et al. Application of improved memetic algorithm for fault location in distribution network with DG[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30(2): 265-273. | |
[57] | 杨莉, 周年荣, 李川, 等. 含DG配电网故障定位的免疫二进制萤火虫算法[J]. 化工自动化及仪表, 2021, 48(3): 253-258. |
YANG Li, ZHOU Nianrong, LI Chuan, et al. IBFA for fault location of DG-included power distribution network[J]. Control and Instruments in Chemical Industry, 2021, 48(3): 253-258. | |
[58] | 刘畅宇, 王小君, 尚博阳, 等. 基于渐进式认知发现的新型配电网故障定位方法[J]. 高电压技术, 2024, 50(3): 1156-1164. |
LIU Changyu, WANG Xiaojun, SHANG Boyang, et al. Fault location method based on stepwise cognition-discovery in new distribution network[J]. High Voltage Engineering, 2024, 50(3): 1156-1164. | |
[59] | 郭上华, 王钢. 融合FTU和配变告警信息的有源配网故障定位方法[J]. 电力系统保护与控制, 2022, 50(22): 92-99. |
GUO Shanghua, WANG Gang. An active distribution network fault location method based on FTU and transformer alarm information[J]. Power System Protection and Control, 2022, 50(22): 92-99. | |
[60] | MONADI M, FARZIN H, RODRIGUEZ P. A distributed self-healing method for active distribution systems[C]// 8th International Conference on Renewable Energy Research and Applications. IEEE: 2019: 483-488. |
[61] | 李佳玮, 王小君, 和敬涵, 等. 基于图注意力网络的配电网故障定位方法[J]. 电网技术, 2021, 45(6): 2113-2121. |
LI Jiawei, WANG Xiaojun, HE Jinghan, et al. Distribution network fault location based on graph attention network[J]. Power System Technology, 2021, 45(6): 2113-2121. | |
[62] | 孙桂花, 王敬华, 张璇, 等. 分布式智能的小电流接地故障定位方法[J]. 电力系统保护与控制, 2017, 45(16): 72-78. |
SUN Guihua, WANG Jinghua, ZHANG Xuan, et al. Small current grounding fault location method of distributed intelligence[J]. Power System Protection and Control, 2017, 45(16): 72-78. | |
[63] | 李群湛, 王帅, 易东, 等. 电气化铁路贯通同相供电AT牵引网故障辨识与自愈技术研究[J]. 铁道学报, 2022, 44(7): 46-54. |
LI Qunzhan, WANG Shuai, YI Dong, et al. Research on fault identification and self-healing technology of AT traction network with co-phase power supply for electrified railway[J]. Journal of the China Railway Society, 2022, 44(7): 46-54. | |
[64] | JAMBORSALAMATI P, SADU A, PONCI F, et al. Design, implementation and real-time testing of an IEC 61850 based FLISR algorithm for smart distribution grids[C]// 2015 IEEE International Workshop on Applied Measurements for Power Systems. IEEE: 2015,7312748. |
[65] | JAMBORSALAMATI P, SADU A, PONCI F, et al. Improvement of supply restoration in multi-spare-feeder active distribution grids using IEC 61850[C]//2017 IEEE Innovative Smart Grid Technologies-Asia(ISGT-Asia). IEEE, 2017:8378326 |
[66] | 彭晔, 王帅, 王克文. 重载铁路贯通同相牵引网故障自愈研究[J]. 机车电传动, 2022(6): 109-115. |
PENG Ye, WANG Shuai, WANG Kewen. A study on fault self-recovery of interconnected co-phase traction network for heavy haul railway[J]. Electric Drive for Locomotives, 2022(6): 109-115. | |
[67] | 郑龙全, 韩卫卫, 辛晓东. 基于对等通信网络的智能分布式自愈控制的研究[J]. 电工技术, 2022(15): 230-234, 242. |
ZHENG Longquan, HAN Weiwei, XIN Xiaodong. Research on smart distributed self-healing control based on the peer-to-peer communication network[J]. Electric Engineering, 2022(15): 230-234, 242. | |
[68] | 曹云东, 刘锐, 侯春光. 基于GOOSE的智能分布式FA故障自愈研究[J]. 电器与能效管理技术, 2020(1): 31-35. |
CAO Yundong, LIU Rui, HOU Chunguang. Research on intelligent distributed FA fault self-healing based on GOOSE[J]. Electrical & Energy Management Technology, 2020(1): 31-35. | |
[69] | 王宗晖, 陈羽, 徐丙垠, 等. 基于逻辑节点的分布式馈线自动化拓扑识别[J]. 电力系统自动化, 2020, 44(12): 124-130. |
WANG Zonghui, CHEN Yu, XU Bingyin, et al. Logical node based topology identification of distributed feeder automation[J]. Automation of Electric Power Systems, 2020, 44(12): 124-130. | |
[70] | 吴海波, 王牣, 韩正庆. 牵引供电系统越区供电方式自愈重构方案研究[J]. 电气化铁道, 2020, 31(5): 1-4. |
WU Haibo, WANG Ren, HAN Zhengqing. Research on self-healing reconstruction scheme for ver-zone power supply mode in traction power supply system[J]. Electric Railway, 2020, 31(5): 1-4. | |
[71] | 卓梦飞. 基于继电保护与配电自动化的配电网故障自愈技术[D]. 淄博: 山东理工大学, 2019. |
ZHUO Mengfei. Fault self-healing technology of distribution network based on relay protection and distribution automation[D]. Zibo: Shandong University of Technology, 2019. | |
[72] | 古展基. 配电网区域保护与自愈控制系统建模及其通信网络性能分析[D]. 广州: 华南理工大学, 2020. |
GU Zhanji. Modeling of regional protection and self-healing control system of distribution network and performance analysis of its communication network[D]. Guangzhou: South China University of Technology, 2020. | |
[73] | 于琦. 基于移动多代理的配电网故障恢复研究[D]. 秦皇岛: 燕山大学, 2014. |
YU Qi. Research on fault recovery of distribution network based on mobile multi-agent[D]. Qinhuangdao: Yanshan University, 2014. | |
[74] | 王政彤, 吴光龙, 眭浩淼, 等. 基于遗传算法的牵引网智能重构自愈技术研究[J]. 电气化铁道, 2022, 33(2): 42-46. |
WANG Zhengtong, WU Guanglong, SUI Haomiao, et al. Study on intelligent reconfiguration self-healing technology for traction network based on genetic algorithm[J]. Electric Railway, 2022, 33(2): 42-46. | |
[75] | ARTEM K, MARTIN W, ERIC G. Application of graph theory for automatic restoration distribution networks[C]. Power and Energy Student Summit, 2022: 64-68. |
[76] | 赵立儒. 基于智能算法的主动配电网自愈及调度优化研究[D]. 秦皇岛: 燕山大学, 2015. |
ZHAO Liru. Research on self-healing and scheduling optimization of active distribution network based on intelligent algorithm[D]. Qinhuangdao: Yanshan University, 2015. | |
[77] | 郑悦. 枢纽牵引供电系统自愈重构方案研究[D]. 成都: 西南交通大学, 2022. |
ZHENG Yue. Research on self-healing reconstruction scheme of traction power supply system in hub[D]. Chengdu: Southwest Jiaotong University, 2022. | |
[78] | 吴静子, 魏登峰. 基于改进粒子群算法的配电网故障自愈算法[J]. 电力学报, 2014, 29(3): 206-210, 222. |
WU Jingzi, WEI Dengfeng. Distribution network fault self-healing algorithm based on improved PSO[J]. Journal of Electric Power, 2014, 29(3): 206-210, 222. | |
[79] | 欧阳卫年, 谭振鹏, 李响. 基于粒子群算法的智能配电网故障自愈控制[J]. 信息技术, 2020, 44(12): 134-138. |
OUYANG Weinian, TAN Zhenpeng, LI Xiang. Fault self healing control of intelligent distribution network based on particle swarm optimization[J]. Information Technology, 2020, 44(12): 134-138. | |
[80] | 吴毅冰, 汪旭东, 吴宏普. 基于二进制粒子群-蚁群算法的配电网自愈控制研究[J]. 通信电源技术, 2017, 34(5): 67-68, 70. |
WU Yibing, WANG Xudong, WU Hongpu. Research on self-recovery control of distribution network based on binary particle swarm ant colony algorithm[J]. Telecom Power Technology, 2017, 34(5): 67-68, 70. | |
[81] | 邱炜. 基于混合蚁群算法的配电网故障区段定位研究[D]. 淄博: 山东理工大学, 2018. |
QIU Wei. Research on fault location of distribution network based on hybrid ant colony algorithm[D]. Zibo: Shandong University of Technology, 2018. | |
[82] | XU Q, GUO H B, FENG X G, et al. Research on self-healing strategy of smart distribution grid based on improved ant colony algorithm[C]// Proceedings of the 28th Chinese Control and Decision Conference. 2016: 390-395. |
[83] | 陈真清. 基于人工鱼群算法的城市配电网自愈研究[D]. 天津: 天津城建大学, 2014. |
CHEN Zhenqing. Research on self-healing of urban distribution network based on artificial fish swarm algorithm[D]. Tianjin: Tianjin Chengjian University, 2014. | |
[84] | 党建, 闫运江, 贾嵘, 等. 基于图计算的配电网最大供电能力评估研究[J]. 电网技术, 2022, 46(3): 1039-1049. |
DANG Jian, YAN Yunjiang, JIA Rong, et al. Total supply capability evaluation of distribution network based on graph computation[J]. Power System Technology, 2022, 46(3): 1039-1049. | |
[85] | 郑涛, 潘玉美, 郭昆亚, 等. 基于免疫算法的配电网故障定位方法研究[J]. 电力系统保护与控制, 2014, 42(1): 77-83. |
ZHENG Tao, PAN Yumei, GUO Kunya, et al. Fault location of distribution network based on immune algorithm[J]. Power System Protection and Control, 2014, 42(1): 77-83. | |
[86] | 刘凯, 李文佩, 程潜善, 等. 基于启发式规则和人工免疫的智能配电网自愈[J]. 武汉大学学报(工学版), 2016, 49(2): 218-222. |
LIU Kai, LI Wenpei, CHENG Qianshan, et al. Self-healing of smart distribution network based on heuristic rules and artificial immune[J]. Engineering Journal of Wuhan University, 2016, 49(2): 218-222. | |
[87] | 刘茜. 基于免疫算法和模糊评价的配电网自愈策略研究[D]. 北京: 华北电力大学, 2012. |
LIU Qian. Research on self-healing strategy of distribution network based on immune algorithm and fuzzy evaluation[D]. Beijing: North China Electric Power University, 2012. | |
[88] | 高兴芬, 陈静, 冯辉辉, 等. 基于樽海鞘算法的智能电网故障自愈控制研究[J]. 信息技术, 2022, 46(7): 171-175, 181. |
GAO Xingfen, CHEN Jing, FENG Huihui, et al. Fault self-healing control of intelligent power networks based on salp swarm algorithm[J]. Information Technology, 2022, 46(7): 171-175, 181. | |
[89] | MARIN-QUINTERO J, OROZCO-HENAO C, MORA-FLOREZ J. Data-driven topology detector for self-healing strategies in Active Distribution Networks[J]. Energy Reports, 2023, 9(S3): 377-385. |
[90] | 杨华, 李喜旺, 司志坚, 等. 基于图神经网络的配电网故障预测[J]. 计算机系统应用, 2020, 29(9): 131-135. |
YANG Hua, LI Xiwang, SI Zhijian, et al. Accident prediction of power distribution network based on graph neural network[J]. Computer Systems & Applications, 2020, 29(9): 131-135. | |
[91] | BOYACI O, UMUNNAKWE A, SAHU A, et al. Graph neural networks based detection of stealth false data injection attacks in smart grids[J]. IEEE Systems Journal, 2021, 16(2): 2946-2957. |
[92] | 张沛, 陈玉鑫, 王光华, 等. 基于图强化学习的配电网故障恢复决策[J]. 电力系统自动化, 2024, 48(2): 151-158. |
ZHANG Pei, CHEN Yuxin, WANG Guanghua, et al. Fault recovery decision of distribution network based on graph reinforcement learning[J]. Automation of Electric Power Systems, 2024, 48(2): 151-158. | |
[93] | 王力, 倪俊, 吕静, 等. 基于混合算法用于配电网多重故障的自愈研究[J]. 湖北民族学院学报(自然科学版), 2018, 36(3): 356-360. |
WANG Li, NI Jun, LYU Jing, et al. Research on self-healing of multiple faults of distribution network based on a hybrid algorithm[J]. Journal of Hubei University for Nationalities (Natural Science Edition), 2018, 36(3): 356-360. | |
[94] | 范鹏逸, 余涛, 王梓耀, 等. 显式集成可靠性表达式的柔性配电网多类型开关优化配置[J/OL]. 中国电机工程学报,1-11(2024-06-12)[2024-10-01]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240612.1349.010.html. |
FAN Pengyi, YU Tao, WANG Xinyao, et al. Optimal deployment of multi-type switches in flexible distribution network explicitly integrating reliability expressions[J/OL]. Proceedings of the CSEE,1-11(2024-06-12)[2024-10-01]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240612.1349.010.html. | |
[95] | 姚建国, 余涛, 杨胜春, 等. 提升电网调度中人工智能可用性的混合增强智能知识演化技术[J]. 电力系统自动化, 2022, 46(20): 1-12. |
YAO Jianguo, YU Tao, YANG Shengchun, et al. Knowledge evolution technology based on hybrid-augmented intelligence for improving practicability of artificial intelligence in power grid dispatch[J]. Automation of Electric Power Systems, 2022, 46(20): 1-12. | |
[96] | 李鹏, 黄文琦, 梁凌宇, 等. 人机混合增强决策智能在新型电力系统调控中的应用与展望[J]. 中国电机工程学报, 2024, 44(16): 6347-6367. |
LI Peng, HUANG Wenqi, LIANG Lingyu, et al. Application and prospect of hybrid human-machine decision intelligence in the dispatch and control of next-era power systems[J]. Proceedings of the CSEE, 2024, 44(16): 6347-6367. | |
[97] | 李鹏, 余涛, 李立浧, 等. 电力人工智能的演变与展望: 从专业智能走向通用智能[J]. 电力系统自动化, 2024, 48(16): 1-17. |
LI Peng, YU Tao, LI Licheng, et al. Retrospect and prospect of artificial intelligence for electric power system: From domain intelligence to general intelligence[J]. Automation of Electric Power Systems, 2024, 48(16): 1-17. | |
[98] | BRENNA M, FOIADELLI F, KALEYBAR H J. The evolution of railway power supply systems toward smart microgrids: The concept of the energy hub and integration of distributed energy resources[J]. IEEE Electrification Magazine, 2020, 8(1): 12-23. |
[99] | LIU H J, TANG T, LYU J D, et al. A dual-objective substation energy consumption optimization problem in subway systems[J]. Energies, 2019, 12(10): 1876. |
[100] | DANG J T, ZOU C. Application research of BIM technology in subway power supply and distribution construction[C]// IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2020, 455(1): 012148. |
[101] | ROUSTAEI M, NIKNAM T, AGHAEI J, et al. Enhancing smart city operation management: Integrating energy systems with a subway synergism hub[J]. Sustainable Cities and Society, 2024, 107: 105446. |
[102] | LIU S W, LU C, HE G N. Distributed electric bicycle batteries for subway station energy management as a virtual power plant[J]. Applied Energy, 2024, 370: 123094. |
[103] | 程乐峰, 余涛, 张孝顺, 等. 机器学习在能源与电力系统领域的应用和展望[J]. 电力系统自动化, 2019, 43(1): 15-31. |
CHENG Lefeng, YU Tao, ZHANG Xiaoshun, et al. Machine learning for energy and electric power systems: state of the art and prospects[J]. Automation of Electric Power Systems, 2019, 43(1): 15-31. | |
[104] |
李明扬, 窦梦园. 基于强化学习的含电动汽车虚拟电厂优化调度[J]. 综合智慧能源, 2024, 46(6): 27-34.
doi: 10.3969/j.issn.2097-0706.2024.06.004 |
LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning[J]. Integrated Intelligent Energy, 2024, 46(6): 27-34.
doi: 10.3969/j.issn.2097-0706.2024.06.004 |
|
[105] |
李云, 周世杰, 胡哲千, 等. 基于NSGA-Ⅱ-WPA的综合能源系统多目标优化调度[J]. 综合智慧能源, 2024, 46(4): 1-9.
doi: 10.3969/j.issn.2097-0706.2024.04.001 |
LI Yun, ZHOU Shijie, HU Zheqian, et al. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA[J]. Integrated Intelligent Energy, 2024, 46(4): 1-9.
doi: 10.3969/j.issn.2097-0706.2024.04.001 |
|
[106] | 余涛, 程乐峰, 张孝顺. 基于信息-物理-社会系统融合和群体机器学习的弱中心化微元网:理论研究与关键科学问题分析[J]. 中国科学: 技术科学, 2019, 49(12): 1541-1569. |
YU Tao, CHENG Lefeng, ZHANG Xiaoshun. The weakly-centralized Web-of-Cells based on cyber-physical-social systems integration and group machine learning: Theoretical investigations and key scientific issues analysis[J]. Scientia Sinica (Technologica), 2019, 49(12): 1541-1569. | |
[107] |
李明扬, 董哲. 含分布式新能源和需求响应负荷的虚拟电厂定价机制及优化调度[J]. 综合智慧能源, 2024, 46(10): 12-17.
doi: 10.3969/j.issn.2097-0706.2024.10.002 |
LI Mingyang, DONG Zhe. Pricing mechanism and optimal scheduling of virtual power plants containing distributed renewable energy and demand response loads[J]. Integrated Intelligent Energy, 2024, 46(10): 12-17.
doi: 10.3969/j.issn.2097-0706.2024.10.002 |
|
[108] | 陈聪. 柔性直流配电系统保护及定位技术研究[D]. 北京: 华北电力大学, 2022. |
CHEN Cong. Research on protection and location technology of flexible DC distribution system[D]. Beijing: North China Electric Power University, 2022. | |
[109] |
冯骥, 杨国华, 史磊, 等. 基于并行融合深度残差收缩网络的有源配电网故障诊断[J]. 综合智慧能源, 2024, 46(6): 8-15.
doi: 10.3969/j.issn.2097-0706.2024.06.002 |
FENG Ji, YANG Guohua, SHI Lei, et al. Research on fault diagnosis of active distribution network based on parallel fusion deep residual shrinkage network[J]. Integrated Intelligent Energy, 2024, 46(6): 8-15.
doi: 10.3969/j.issn.2097-0706.2024.06.002 |
|
[110] | 刘子奕, 贾科, 姚昆鹏, 等. 基于主动注入的柔性直流配电网故障定位[J]. 电力系统保护与控制, 2023, 51(18): 21-30. |
LIU Ziyi, JIA Ke, YAO Kunpeng, et al. An active converter injection-based fault location method for a flexible DC distribution network[J]. Power System Protection and Control, 2023, 51(18): 21-30. |
[1] | 程乐峰, 刘奕杭, 邹涛. 博弈论视角下智能电网需求响应研究综述[J]. 综合智慧能源, 2025, 47(4): 1-22. |
[2] | 张冬冬, 单琳珂, 刘天皓. 人工智能技术在风力与光伏发电数据挖掘及功率预测中的应用综述[J]. 综合智慧能源, 2025, 47(3): 32-46. |
[3] | 张冬冬, 李芳凝, 刘天皓. 新型电力系统负荷预测关键技术及多元场景应用[J]. 综合智慧能源, 2025, 47(3): 47-61. |
[4] | 崔再岳, 杨扬, 王立地. 考虑负荷需求响应的配电网三相不平衡优化[J]. 综合智慧能源, 2025, 47(3): 92-101. |
[5] | 刘斌, 孙周, 姜之未, 郭明阳, 曹灿. 数字化赋能交通能源融合:技术路径、应用场景与未来展望[J]. 综合智慧能源, 2025, 47(2): 1-12. |
[6] | 石鑫, 刘奇央, 高峰. 深度神经网络在新型能源系统中的应用及展望[J]. 综合智慧能源, 2025, 47(2): 88-101. |
[7] | 袁孝科, 沈石兰, 张茂松, 石晨旭, 杨凌霄. 基于可解释强化学习的智能虚拟电厂最优调度[J]. 综合智慧能源, 2025, 47(1): 1-9. |
[8] | 曲琪, 滕菲, 郭禹辛, 张琳雪. 考虑算力需求的港口综合能源系统分布式能源管理[J]. 综合智慧能源, 2025, 47(1): 42-50. |
[9] | 胡嘉诚, 张宁, 曹雨桐, 胡存刚. 分布式能源接入下虚拟电厂负荷优化调度决策[J]. 综合智慧能源, 2025, 47(1): 62-69. |
[10] | 胡杰, 战巧蓉, 田德硕, 李文伟. 考虑隐私保护的虚拟电厂经济调度策略[J]. 综合智慧能源, 2025, 47(1): 79-87. |
[11] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[12] | 王雅雯, 宗绍梁, 程之远, 陆万鹏. 基于FTA的火电厂SCR脱硝系统可靠性评价[J]. 综合智慧能源, 2024, 46(8): 77-85. |
[13] | 郁海彬, 卢闻州, 唐亮, 张煜晨, 邹翔宇, 姜玉靓, 刘嘉宝. 考虑风险偏好的多主体虚拟电厂经济调度与收益分配策略[J]. 综合智慧能源, 2024, 46(6): 66-77. |
[14] | 冯骥, 杨国华, 史磊, 潘欢, 陆宇翔, 张元曦, 李祯. 基于并行融合深度残差收缩网络的有源配电网故障诊断[J]. 综合智慧能源, 2024, 46(6): 8-15. |
[15] | 俞胜, 周霞, 沈希澄, 戴剑丰, 刘增稷. 考虑网络攻击影响的源网荷储系统风险评估[J]. 综合智慧能源, 2024, 46(5): 41-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||