综合智慧能源 ›› 2025, Vol. 47 ›› Issue (4): 63-72.doi: 10.3969/j.issn.2097-0706.2025.04.005
收稿日期:
2024-12-24
修回日期:
2025-01-15
出版日期:
2025-03-03
作者简介:
殷林飞(1990),男,副教授,博士生导师,博士,从事电力系统运行与分析、人工智能在电力系统的应用等方面的研究,yinlinfei@gxu.edu.cn;基金资助:
YIN Linfeia(), ZHANG Yilingb(
)
Received:
2024-12-24
Revised:
2025-01-15
Published:
2025-03-03
Supported by:
摘要:
针对光伏出力预测准确率较低的问题,提出一种多重卷积组合大模型,即三重卷积神经网络(TCNNs)、权重全连接回归网络(WFRN)和改进的双向编码器表征网络(IBERT)的组合预测模型。TCNNs采用多种尺寸的卷积核由浅入深高效挖掘光伏数据的特征信息;WFRN利用粒子群优化算法优化2个深度神经网络预测输出的权重系数,提高预测精度;整合TCNNs和WFRN的预测结果并输入到IBERT的大模型中训练,利用IBERT的注意力机制实现可解释性的特征分析,从而确定最终光伏出力预测值。将TCNNs-WFRN-IBERT用于预测巴西纳塔尔市提前1d每小时的光伏出力,用实际光伏出力和气象数据进行仿真试验并与38种算法作对比。试验结果表明,TCNNs-WFRN-IBERT模型的平均绝对误差、均方误差和均方根误差分别为22.61 W,1 818.20 W2和42.64 W。经对比,TCNNs-WFRN-IBERT的各评价指标均低于其他模型,且MAE数值比其他38种对比模型相对至少小2.71%,验证了所提模型的有效性。
中图分类号:
殷林飞, 张依玲. 基于多重卷积组合大模型的光伏出力预测[J]. 综合智慧能源, 2025, 47(4): 63-72.
YIN Linfei, ZHANG Yiling. Photovoltaic output prediction based on multi-convolutional combined large model[J]. Integrated Intelligent Energy, 2025, 47(4): 63-72.
表2
各模型的MAE,MSE和RMSE的数值
模型名称 | MAE/W | MSE/W2 | RMSE/W | 运行时间/s |
---|---|---|---|---|
AlexNet | 247.94 | 194 908.19 | 441.48 | 456.31 |
DarkNet19 | 158.28 | 79 600.30 | 282.13 | 1 689.57 |
DarkNet53 | 102.94 | 41 210.35 | 203.00 | 4 055.35 |
DenseNet201 | 174.40 | 94 239.47 | 306.98 | 5 760.14 |
EffiientNetb0 | 164.36 | 85 189.21 | 291.87 | 3 093.61 |
GoogLeNet | 100.89 | 38 372.87 | 195.89 | 1 120.91 |
InceptionV3 | 83.55 | 30 628.82 | 175.01 | 2 844.36 |
ResNet18 | 73.29 | 21 711.45 | 147.35 | 1 164.01 |
ResNet50 | 94.87 | 35 622.48 | 188.74 | 3 280.85 |
ResNet101 | 93.72 | 34 791.92 | 186.53 | 5 263.96 |
Xception | 141.03 | 66 242.63 | 257.38 | 6 143.48 |
MobileNetV2 | 149.72 | 72 703.32 | 269.64 | 2 519.27 |
NasNetLarge | 84.94 | 29 344.34 | 171.30 | 27 451.94 |
ShuffleNet | 155.23 | 84 872.51 | 291.33 | 1 241.64 |
SqueezeNet | 134.37 | 69 619.88 | 263.86 | 498.21 |
VGG16 | 83.59 | 20 866.79 | 144.45 | 6 107.52 |
VGG19 | 296.71 | 256 899.42 | 506.85 | 91 851.62 |
Lasso回归 | 120.13 | 21 716.37 | 147.37 | 0.10 |
极限梯度提升 | 64.23 | 10 810.16 | 103.97 | 0.00 |
ε-支持向量回归 | 143.34 | 41 313.54 | 203.26 | 2.41 |
极度随机树回归 | 58.35 | 10 083.66 | 100.42 | 2.18 |
自动相关确定 | 119.43 | 21 497.23 | 146.62 | 0.07 |
堆叠泛化回归 | 56.36 | 24 741.26 | 157.29 | 0.90 |
自适应提升回归 | 272.40 | 80 089.26 | 283.01 | 1.65 |
泰尔-森估算回归 | 129.53 | 25 046.19 | 158.26 | 2.40 |
随机梯度下降回归 | 121.75 | 22 925.57 | 151.41 | 0.03 |
留一交叉验证岭回归 | 120.05 | 21 625.31 | 147.06 | 0.03 |
LSTM | 134.66 | 53 872.48 | 232.10 | 15.44 |
Huber回归 | 140.21 | 35 503.58 | 179.23 | 0.18 |
贝叶斯岭回归 | 120.46 | 21 728.48 | 147.41 | 0.01 |
决策树回归 | 78.90 | 22 169.43 | 148.89 | 0.09 |
梯度提升回归 | 83.15 | 16 546.94 | 116.39 | 2.17 |
核岭回归 | 119.28 | 21 991.92 | 153.65 | 2.19 |
最小角回归 | 219.83 | 70 522.80 | 265.56 | 0.01 |
投票回归 | 83.76 | 14 088.76 | 118.70 | 8.95 |
Inception-ResNet-V2 | 166.25 | 86 644.95 | 294.36 | 5 045.47 |
VMD-TCNNs | 49.05 | 7 403.94 | 86.05 | 0.41 |
WFRN | 23.24 | 2 002.60 | 44.75 | 90.89 |
TCNNs-WFRN-IBERT | 22.61 | 1 818.20 | 42.64 | 4.18 |
[1] |
董强, 徐君, 方东平, 等. 基于光伏出力特性的分布式光储系统优化调度策略[J]. 综合智慧能源, 2024, 46(4): 17-23.
doi: 10.3969/j.issn.2097-0706.2024.04.003 |
DONG Qiang, XU Jun, FANG Dongping, et al. Optimal scheduling strategy of distributed PV-energy storage systems based on PV output characteristics[J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. | |
[2] |
欧阳婷, 蔡晔, 王炜宇, 等. 计及风电、光伏预测不确定性的抽水蓄能日前全调度优化[J]. 综合智慧能源, 2022, 44(11):20-27.
doi: 10.3969/j.issn.2097-0706.2022.11.003 |
OUYANG Ting, CAI Ye, WANG Weiyu, et al. Overall day-ahead scheduling optimization for pumped-storage power stations considering the uncertainty of wind and photovoltaic power prediction[J]. Integrated Intelligent Energy, 2022, 44(11): 20-27.
doi: 10.3969/j.issn.2097-0706.2022.11.003 |
|
[3] |
高明, 陈家豪, 王丽晓, 等. 考虑光伏不确定性因素的电力系统概率潮流三点估计法[J]. 综合智慧能源, 2022, 44(9):1-10.
doi: 10.3969/j.issn.2097-0706.2022.09.001 |
GAO Ming, CHEN Jiahao, WANG Lixiao, et al. A three-point probabilistic load flow estimation algorithm for the power system considering photovoltaic uncertainties[J]. Integrated Intelligent Energy, 2022, 44(9): 1-10.
doi: 10.3969/j.issn.2097-0706.2022.09.001 |
|
[4] |
王义, 杨志伟, 吴坡, 等. 计及高比例分布式光伏能源接入的配电网状态估计[J]. 综合智慧能源, 2022, 44(10):12-18.
doi: 10.3969/j.issn.2097-0706.2022.10.002 |
WANG Yi, YANG Zhiwei, WU Po, et al. State estimation for the distribution network with high-proportion distributed photovoltaic energy[J]. Integrated Intelligent Energy, 2022, 44(10): 12-18.
doi: 10.3969/j.issn.2097-0706.2022.10.002 |
|
[5] | 吕伟杰, 方一帆, 程泽. 基于模糊C均值聚类和样本加权卷积神经网络的日前光伏出力预测研究[J]. 电网技术, 2022, 46(1): 231-238. |
LÜ Weijie, FANG Yifan, CHENG Ze. Prediction of day-ahead photovoltaic output based on FCM-WS-CNN[J]. Power System Technology, 2022, 46(1): 231-238. | |
[6] | 高博, 茆超, 张冲标, 等. 基于时空图网络的分布式光伏发电出力预测[J]. 电力系统及其自动化学报, 2023, 35(3):125-133. |
GAO Bo, MAO Chao, ZHANG Chongbiao, et al. Output prediction of distributed photovoltaic power generation based on Spatialtemporal graph neural network[J]. Proceedings of the CSU-EPSA, 2023, 35(3):125-133. | |
[7] |
邢晨, 张照贝. 基于改进时间卷积网络的短期光伏出力概率预测方法[J]. 太阳能学报, 2023, 44(2):373-380.
doi: 10.19912/j.0254-0096.tynxb.2021-1033 |
XING Chen, ZHANG Zhaobei. Short-term probabilistic forecasting method of photovoltaic output power based on improved temporal convolutional network[J]. Acta Energiae Solaris Sinica, 2023, 44(2):373-380.
doi: 10.19912/j.0254-0096.tynxb.2021-1033 |
|
[8] | 田润, 谢华北, 庄富豪, 等. 光伏出力预测方法综述[J]. 电工技术, 2024(10): 42-45. |
TIAN Run, XIE Huabei, ZHUANG Fuhao, et al. Overview of methods of predicting photovoltaic output[J]. Electric Engineering, 2024(10): 42-45. | |
[9] | 武宇翔, 韩肖清, 牛哲文, 等. 融合多注意力深度神经网络的可解释光伏功率区间预测[J]. 电网技术, 2024, 48(7): 2928-2939. |
WU Yuxiang, HAN Xiaoqing, NIU Zhewen, et al. Interpretable photovoltaic power interval prediction using multi-attention deep neural networks[J]. Power System Technology, 2024, 48(7): 2928-2939. | |
[10] | 高漪, 周瑜, 张安龙, 等. 整县光伏下基于个性化联邦学习的光伏出力及负荷功率预测[J]. 电网技术, 2023, 47(11): 4629-4637. |
GAO Yi, ZHOU Yu, ZHANG Anlong, et al. Personalized federated learning framework for countywide PV generation and load forecasting[J]. Power System Technology, 2023, 47(11): 4629-4637. | |
[11] | 刘洁, 林舜江, 梁炜焜, 等. 基于高阶马尔可夫链和高斯混合模型的光伏出力短期概率预测[J]. 电网技术, 2023, 47(1):266-274. |
LIU Jie, LIN Shunjiang, LIANG Weikun, et al. Short-term probabilistic forecast for power output of photovoltaic station based on high order Markov chain and Gaussian mixture model[J]. Power System Technology, 2023, 47(1):266-274. | |
[12] | 唐飞, 谢家锐, 刘承锡, 等. 基于全纯嵌入法的配电网光伏接纳能力评估方法[J]. 电网技术, 2024, 48(1): 291-299. |
TANG Fei, XIE Jiarui, LIU Chengxi, et al. PV hosting capacity evaluation of distribution networks based on holomorphic embedding method[J]. Power System Technology, 2024, 48(1): 291-299. | |
[13] |
盛瑞祥, 张啸宇. 基于概率TCN-Transformer的短期光伏功率预测模型[J]. 综合智慧能源, 2024, 46(11): 10-18.
doi: 10.3969/j.issn.2097-0706.2024.11.002 |
SHENG Ruixiang, ZHANG Xiaoyu. Photovoltaic power forecasting model based on probabilistic TCN-Transformer[J]. Integrated Intelligent Energy, 2024, 46(11): 10-18.
doi: 10.3969/j.issn.2097-0706.2024.11.002 |
|
[14] |
袁俊球, 王迪, 谢小锋, 等. 基于广义天气分类的ICEEMDAN-LSTM网络光伏发电功率短期预测[J]. 综合智慧能源, 2024, 46(9): 53-60.
doi: 10.3969/j.issn.2097-0706.2024.09.007 |
YUAN Junqiu, WANG Di, XIE Xiaofeng, et al. Study of short-term PV power prediction based on ICEEMDAN-LSTM networks under generalized weather classifications[J]. Integrated Intelligent Energy, 2024, 46(9): 53-60.
doi: 10.3969/j.issn.2097-0706.2024.09.007 |
|
[15] | 王振浩, 王翀, 成龙, 等. 基于集合经验模态分解和深度学习的光伏功率组合预测[J]. 高电压技术, 2022, 48(10): 4133-4142. |
WANG Zhenhao, WANG Chong, CHENG Long, et al. Photovoltaic power combined prediction based on ensemble empirical mode decomposition and deep learning[J]. High Voltage Engineering, 2022, 48(10): 4133-4142. | |
[16] | 龙小慧, 秦际赟, 张青雷, 等. 基于相似日聚类及模态分解的短期光伏发电功率组合预测研究[J]. 电网技术, 2024, 48(7): 2948-2957. |
LONG Xiaohui, QIN Jiyun, ZHANG Qinglei, et al. Short-term photovoltaic power prediction study based on similar day clustering and modal decomposition[J]. Power System Technology, 2024, 48(7): 2948-2957. | |
[17] | 董志强, 郑凌蔚, 苏然, 等. 一种基于IGWO-SNN的光伏出力短期预测方法[J]. 电力系统保护与控制, 2023, 51(1):131-138. |
DONG Zhiqiang, ZHENG Lingwei, SU Ran, et al. An IGWO-SNN-based method for short-term forecast of photovoltaic output[J]. Power System Protection and Control, 2023, 51(1):131-138. | |
[18] |
李彬, 胡纯瑾, 王婧, 等. 基于EEMD-BILSTM的可调节负荷预测方法[J]. 综合智慧能源, 2022, 44(9):33-39.
doi: 10.3969/j.issn.2097-0706.2022.09.005 |
LI Bin, HU Chunjin, WANG Jing. Prediction method for adjustable load based on EEMD-BiLSTM[J]. Integrated Intelligent Energy, 2022, 44(9):33-39.
doi: 10.3969/j.issn.2097-0706.2022.09.005 |
|
[19] |
林泓宏, 余涛, 张桂源, 等. 基于数据驱动的高比例新能源配电网无功优化算法[J]. 综合智慧能源, 2023, 45(11):10-19.
doi: 10.3969/j.issn.2097-0706.2023.11.002 |
LIN Honghong, YU Tao, ZHANG Gguiyuan, et al. Data-driven reactive power optimization algorithm for the distribution network with high proportion of renewable energy[J]. Integrated Intelligent Energy, 2023, 45(11):10-19.
doi: 10.3969/j.issn.2097-0706.2023.11.002 |
|
[20] |
殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7):12-20.
doi: 10.3969/j.issn.2097-0706.2024.07.002 |
YIN Linfei, MENG YuJie. Short-term wind power forecasting based on DenseNet convolutional neural networks[J]. Integrated Intelligent Energy, 2024, 46(7):12-20.
doi: 10.3969/j.issn.2097-0706.2024.07.002 |
|
[21] | 王永林, 白永峰, 孔祥山, 等. 基于CNN-LSTM算法的脱硝优化控制模型研究[J]. 综合智慧能源, 2022, 45(6):25-33. |
WANG Yonhlin, BAI Yongfeng, KONG Xiangshan, et al. Study on denitration optimization control model based on CNN-LSTM algorithm[J]. Integrated Intelligent Energy, 2022, 45(6):25-33. | |
[22] |
刘文慧, 严博文, 吴江, 等. 基于平行控制理论的循环流化床锅炉床温智能预测模型[J]. 综合智慧能源, 2022, 44(3):50-57.
doi: 10.3969/j.issn.2097-0706.2022.03.008 |
LIU Wenhui, YAN Bowen, WU Jiang, et al. Intelligent prediction model of CFB boiler bed temperature based on parallel control theory[J]. Integrated Intelligent Energy, 2022, 44(3):50-57.
doi: 10.3969/j.issn.2097-0706.2022.03.008 |
|
[23] | 殷林飞, 张依玲. 结合变分模态分解与三重卷积神经网络的光伏出力预测[J/OL]. 综合智慧能源, 2024: 1-9 (2024-09-11)[2024-12-20]. http://kns.cnki.net/kcms/detail/41.1461.TK.20240910.1606.004.html. |
YIN Linfei, ZHANG Yiling. Photovoltaic power output prediction based on variational mode decomposition and triple convolutional neural networks[J/OL]. Integrated Intelligent Energy, 2024:1-9(2024-09-11)[2024-12-20]. http://kns.cnki.net/kcms/detail/41.1461.TK.20240910.1606.004.html. | |
[24] | 邱文智, 张文煜, 郭振海, 等. 基于二次分解和乌鸦搜索算法优化组合模型的超短期风速预测[J]. 太阳能学报, 2024, 45(3): 73-82. |
QIU Wenzhi, ZHANG Wenyu, GUO Zhenhai, et al. Ultra-short-term wind speed forecasting based on optimalcombination modelof secondary decompositionand crow search algorithm[J]. Acta Energiae Solaris Sinica, 2024, 45(3): 73-82. | |
[25] | 杨晶, 赵津蔓, 孟润泉, 等. 基于粒子群优化和卷积神经网络的电力系统运行状态辨识[J]. 电网技术, 2024, 48(1):315-324. |
YANG Jing, ZHAO Jinman, MENG Runquan, et al. Power system operation state identification based on particle swarm optimization and convolutional neural network[J]. Power System Technology, 2024, 48(1): 315-324. | |
[26] | YIN L F, CAO X H, Liu D D. Weighted fuly-connected regression networks for one-day-ahead hourly photovoltaic power forecasting[J]. Applied Energy, 2023,332:120-527. |
[27] |
欧阳祺, 陈鸿昶, 刘树新, 等. 基于Bert-GNNs异质图注意力网络的早期谣言检测[J]. 电子学报, 2024, 52(1): 311-323.
doi: 10.12263/DZXB.20220882 |
OUYANG Qi, CHEN Hongchang, LIU Shuxin, et al. Early rumor detection based on Bert-GNNs heterogeneous graph attention network[J]. Acta Electronica Sinica, 2024, 52(1): 311-323.
doi: 10.12263/DZXB.20220882 |
|
[28] |
宋程程, 赵依然, 李晓艳, 等. 基于BERT和CNN的致病剪接突变预测方法[J]. 模式识别与人工智能, 2024, 37(2): 181-190.
doi: 10.16451/j.cnki.issn1003-6059.202402007 |
SONG Chengcheng, ZHAO Yiran, LI Xiaoyan, et al. BERT and CNN-based deleterious splicing mutation prediction method[J]. Pattern Recognition and Artificial Intelligence, 2024, 37(2): 181-190.
doi: 10.16451/j.cnki.issn1003-6059.202402007 |
[1] | 杨澜倩, 郭锦敏, 田慧丽, 黄畅, 刘敏, 蔡阳. 基于CNN-LSTM-Self attention的园区负荷多尺度预测研究[J]. 综合智慧能源, 2025, 47(2): 79-87. |
[2] | 李方一, 李楠, 周琰, 谢武. 基于多维数据与深度学习的区域发电碳排放因子预测研究[J]. 综合智慧能源, 2023, 45(8): 11-17. |
[3] | 刘文慧, 严博文, 吴江, 任一君, 孔维政, 谌际宇. 基于平行控制理论的循环流化床锅炉床温智能预测模型[J]. 综合智慧能源, 2022, 44(3): 50-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||