综合智慧能源 ›› 2025, Vol. 47 ›› Issue (4): 63-72.doi: 10.3969/j.issn.2097-0706.2025.04.005

• 电力系统智能化与控制 • 上一篇    下一篇

基于多重卷积组合大模型的光伏出力预测

殷林飞a(), 张依玲b()   

  1. 广西大学 a.电力系统优化与能源技术广西重点实验室;b. 数学与信息科学学院,南宁 530004
  • 收稿日期:2024-12-24 修回日期:2025-01-15 出版日期:2025-03-03
  • 作者简介:殷林飞(1990),男,副教授,博士生导师,博士,从事电力系统运行与分析、人工智能在电力系统的应用等方面的研究,yinlinfei@gxu.edu.cn
    张依玲(2004),女,从事数学与信息科学方面的研究,zhangyiling64@163.com
  • 基金资助:
    国家自然科学基金项目(62463001)

Photovoltaic output prediction based on multi-convolutional combined large model

YIN Linfeia(), ZHANG Yilingb()   

  1. a. Guangxi Key Laboratory of Power System Optimization and Energy Technology;b. School of Mathematics and Information Science, Guangxi University, Nanning 530004, China
  • Received:2024-12-24 Revised:2025-01-15 Published:2025-03-03
  • Supported by:
    National Natural Science Foundation of China(62463001)

摘要:

针对光伏出力预测准确率较低的问题,提出一种多重卷积组合大模型,即三重卷积神经网络(TCNNs)、权重全连接回归网络(WFRN)和改进的双向编码器表征网络(IBERT)的组合预测模型。TCNNs采用多种尺寸的卷积核由浅入深高效挖掘光伏数据的特征信息;WFRN利用粒子群优化算法优化2个深度神经网络预测输出的权重系数,提高预测精度;整合TCNNs和WFRN的预测结果并输入到IBERT的大模型中训练,利用IBERT的注意力机制实现可解释性的特征分析,从而确定最终光伏出力预测值。将TCNNs-WFRN-IBERT用于预测巴西纳塔尔市提前1d每小时的光伏出力,用实际光伏出力和气象数据进行仿真试验并与38种算法作对比。试验结果表明,TCNNs-WFRN-IBERT模型的平均绝对误差、均方误差和均方根误差分别为22.61 W,1 818.20 W2和42.64 W。经对比,TCNNs-WFRN-IBERT的各评价指标均低于其他模型,且MAE数值比其他38种对比模型相对至少小2.71%,验证了所提模型的有效性。

关键词: 三重卷积神经网络, 权重全连接回归网络, 改进的双向编码器表征网络, 光伏出力预测, 多重卷积组合大模型, 注意力机制

Abstract:

To address the issue of low accuracy in photovoltaic output prediction, a multi-convolutional combined large model is proposed, integrating triple convolutional neural networks(TCNNs), a weighted fully-connected regression network(WFRN),and improved bidirectional encoder representations from transformers(IBERT). The TCNNs employed convolutional kernels of multiple sizes to efficiently extract feature information from photovoltaic data, progressing from shallow to deep layers. The weighted fully-connected regression network(WFRN) optimized the weight coefficients of the prediction outputs from two deep neural networks using particle swarm optimization algorithm, thereby enhancing prediction accuracy. The prediction results from TCNNs and WFRN were integrated and input into the IBERT for training. The attention mechanism of IBERT was then employed to perform interpretable feature analysis, determining the final photovoltaic output prediction value. The TCNNs-WFRN-IBERT model was applied to predict the hourly photovoltaic output power for the next day in Natal, Brazil. Simulation tests were conducted using actual photovoltaic output and meteorological data, and the results were compared with those of 38 algorithms. The results showed that the mean absolute error(MAE), mean squared error(MSE), and root mean squared error(RMSE) of the TCNNs-WFRN-IBERT model were 22.61 W, 1 818.20 W2 and 42.64 W, respectively. Compared with other models, the evaluation metrics of TCNNs-WFRN-IBERT were lower than those of the other models, with its MAE value being at least 2.71% smaller than those of the other 38 comparative models, validating the effectiveness of the proposed model.

Key words: triple convolutional neural network, weighted fully connected regression network, improved model of bidirectional encoder representation from transformers, photovoltaic output prediction, multi-convolutional combined large model, attention mechanism

中图分类号: