综合智慧能源 ›› 2025, Vol. 47 ›› Issue (2): 79-87.doi: 10.3969/j.issn.2097-0706.2025.02.008

• 基于AI的新型电力系统调度 • 上一篇    下一篇

基于CNN-LSTM-Self attention的园区负荷多尺度预测研究

杨澜倩1(), 郭锦敏2(), 田慧丽1, 黄畅2,*(), 刘敏2, 蔡阳2   

  1. 1.广东电网有限责任公司广州供电局,广州 510510
    2.暨南大学 能源电力研究中心,广东 珠海 519070
  • 收稿日期:2024-10-18 修回日期:2024-12-06 出版日期:2025-02-25
  • 通讯作者: * 黄畅(1993),男,副教授,博士,从事新能源预测方面的研究,huangc@jnu.edu.cn
  • 作者简介:杨澜倩(1993),女,工程师,硕士,从事电力系统及能源、电网调度运行等方面的研究,1509488787@qq.com
    郭锦敏(2001),男,硕士生,从事电力预测方面的研究,guojm@stu2022.jnu.edu.cn
  • 基金资助:
    南方电网公司科技项目(030100KC23020019);国家自然科学基金项目(52306013);中央高校基本科研业务费专项资金资助项目(21624212)

Research on multi-scale load prediction in parks based on CNN-LSTM-Self attention

YANG Lanqian1(), GUO Jinmin2(), TIAN Huili1, HUANG Chang2,*(), LIU Min2, CAI Yang2   

  1. 1. Guangzhou Power Supply Bureau, Guangdong Power Grid Corporation, Guangzhou 510510, China
    2. Energy and Electricity Research Center, Jinan University, Zhuhai 519070, China
  • Received:2024-10-18 Revised:2024-12-06 Published:2025-02-25
  • Supported by:
    Science and Technology Program of Southern Power Grid Company Limited(030100KC23020019);National Natural Science Foundation of China(52306013);Fundamental Research Funds for the Central Universities(21624212)

摘要:

准确预测负荷对提高零碳智慧园区的能源利用效率和盈利能力至关重要,受到小时级数值天气预报数据难以获取以及需要在不同时间尺度进行预测的双重挑战,常规负荷预测技术的应用受到制约。在缺失气象预报数据的条件下,提出利用卷积神经网络(CNN)提取多元负荷之间的耦合空间特征,将重构的特征输入长短期记忆(LSTM)神经网络实现负荷时间特征提取,再利用自注意力(Self attention)机制强化模型提取特征信息,最后通过全连接网络进行负荷预测,构建基于CNN-LSTM-Self attention的多元负荷多时间尺度预测模型。以某园区为实例对象,对该园区未来1 h,1 d和1 周的冷热电负荷进行预测。试验结果表明:在多个时间尺度上,CNN-LSTM-Self attention模型比CNN,LSTM,CNN-LSTM模型预测更为精确;其中,1 h尺度负荷预测时CNN-LSTM-Self attention模型的优势尤为明显,冷、热、电负荷预测的平均绝对百分比误差(MAPE)比CNN-LSTM模型分别提升了16.25%,19.16%,10.24%。

关键词: 零碳智慧园区, 负荷预测, 多时间尺度, 卷积神经网络, 长短期记忆神经网络, 自注意力机制

Abstract:

Accurate load prediction is critical for improving the energy efficiency and profitability of zero-carbon smart parks. However, the application of conventional load prediction techniques faces two main challenges which are the difficulty in obtaining hourly numerical weather forecast data and the need for predictions across different time scales. In the absence of weather forecast data, a method using Convolutional Neural Networks(CNN) was proposed to extract the coupled spatial features between multiple loads. The reconstructed features were input into a Long Short-Term Memory(LSTM) network to extract temporal features of the load, followed by the application of a self-attention mechanism to enhance the model's ability to extract feature information. A fully connected network was then employed for load prediction, resulting in a multi-variable-load, multi-time-scale prediction model based on CNN-LSTM-Self attention. A case study of a park was used to predict its cooling, heating, and electrical loads for the next 1 hour, 1 day, and 1 week. Experimental results showed that the CNN-LSTM-Self attention model outperformed the CNN, LSTM, and CNN-LSTM models in terms of prediction accuracy across multiple time scales. Specifically, the CNN-LSTM-Self attention model showed a more significant advantage in predicting the 1-hour load, with the mean absolute percentage error(MAPE) of cooling, heating, and electrical load predictions improved by 16.25%, 19.16%, and 10.24%, respectively, compared to the CNN-LSTM model.

Key words: zero-carbon smart park, load prediction, multi-time scale, convolutional neural network, long short-term memory neural network, self-attention mechanism

中图分类号: