[1] |
陈艳波, 张宁, 李嘉祺, 等. 零碳园区研究综述及展望[J]. 中国电机工程学报, 2024, 44(14): 5496-5517.
|
|
CHEN Yanbo, ZHANG Ning, LI Jiaqi, et al. Review and prospect of zero carbon park research[J]. Proceedings of the CSEE, 2024, 44(14): 5496-5517.
|
[2] |
刘天阳, 高亚静, 谢典, 等. 功能型零碳园区建设路径分析[J]. 综合智慧能源, 2023, 45(8): 44-52.
doi: 10.3969/j.issn.2097-0706.2023.08.006
|
|
LIU Tianyang, GAO Yajing, XIE Dian, et al. Analysis on the construction path of functional zero-carbon parks[J]. Integrated Intelligent Energy, 2023, 45(8): 44-52.
doi: 10.3969/j.issn.2097-0706.2023.08.006
|
[3] |
葛磊蛟, 李京京, 李昌禄, 等. 面向零碳园区的综合能源系统优化运行技术综述[J]. 电网技术, 2024, 48(5): 1821-1835.
|
|
GE Leijiao, LI Jingjing, LI Changlu, et al. Overview of integrated energy system optimal operation technology for zero-carbon parks[J]. Power System Technology, 2024, 48(5): 1821-1835.
|
[4] |
吉博文, 吴张傲. 指数平滑法在电力系统负荷预测中的应用[J]. 科技创新与应用, 2018, 8(30): 173-174.
|
|
JI Bowen, WU Zhang'ao. Application of exponential smoothing method in power system load forecasting[J]. Technology Innovation and Application, 2018, 8(30): 173-174.
|
[5] |
PARREÑO S J E. Forecasting electricity consumption in the Philippines using ARIMA models[J]. International Journal of Machine Learning and Computing, 2022, 12(6): IJMLC.2022. 12.6.1112.
|
[6] |
罗权. 基于自适应卡尔曼滤波在气象影响下负荷预测[J]. 计算机测量与控制, 2020, 28(1): 156-159, 165.
|
|
LUO Quan. Short-term load forecasting under meteorological influence based on adaptive Kalman filter[J]. Computer Measurement & Control, 2020, 28(1): 156-159, 165.
|
[7] |
安颖坤, 朱永丹. 基于线性回归法和指数平滑法对电力负荷的预测[J]. 电力设备管理, 2021(5): 177-179.
|
|
AN Yingkun, ZHU Yongdan. Power load forecasting based on linear regression method and exponential smoothing method[J]. Electric Power Equipment Management, 2021(5): 177-179.
|
[8] |
CHAPAGAIN K, KITTIPIYAKUL S. Short-term electricity demand forecasting with seasonal and interactions of variables for thailand[C]// 2018 International Electrical Engineering Congress (iEECON). IEEE, 2018: 1-4.
|
[9] |
AMIN M A A, HOQUE M A. Comparison of ARIMA and SVM for short-term load forecasting[C]// 2019 9th Annual Information Technology, Electromechanical Engineering and Microelectronics Conference (IEMECON). IEEE, 2019: 1-6.
|
[10] |
高明, 郝妍. 基于BiLSTM网络与误差修正的超短期负荷预测[J]. 综合智慧能源, 2023, 45(1): 31-40.
doi: 10.3969/j.issn.2097-0706.2023.01.004
|
|
GAO Ming, HAO Yan. Ultra-short-term load forecasting based on BiLSTM network and error correction[J]. Integrated Intelligent Energy, 2023, 45(1): 31-40.
doi: 10.3969/j.issn.2097-0706.2023.01.004
|
[11] |
CHAFAK T, NUR S, CENK G, et al. Short term load forecasting based on ARIMA and ANN approaches[J]. Energy Reports, 2023, 9(S3): 550-557.
|
[12] |
庄立生. 融合气象特征的BP神经网络电力系统短期负荷预测[J]. 山东电力技术, 2023, 50(11): 51-59.
|
|
ZHUANG Lisheng. Short-term load forecasting for power systems based on BP neural networks[J]. Shandong Electric Power, 2023, 50(11): 51-59.
|
[13] |
AGUILAR M E, ANTONIO N. Short-term electricity load forecasting with machine learning[J]. Information, 2021, 12(2): 50.
|
[14] |
COSTAS M C, VILLANUEVA D, OLLER P E, et al. Load forecasting with machine learning and deep learning methods[J]. Applied Sciences, 2023, 13(13): APP13137933.
|
[15] |
IOANNIS P, ELENI V, PAPAKOSTAS GEORGE A. A survey on deep learning for building load forecasting[J]. Mathematical Problems in Engineering, 2022, 2022: 1008491.
|
[16] |
ZABOLI A, KASIMALLA S R, PARK K, et al. A comprehensive review of behind-the-meter distributed energy resources load forecasting: Models, challenges, and emerging technologies[J]. Energies, 2024, 17(11): en17112534.
|
[17] |
陈胜, 刘鹏飞, 王平, 等. 基于LSTM人工神经网络的电力系统负荷预测方法[J]. 沈阳工业大学学报, 2024, 46(1): 66-71.
doi: 10.7688/j.issn.1000-1646.2024.01.12
|
|
CHEN Sheng, LIU Pengfei, WANG Ping, et al. Load forecasting method of power system based on LSTM artificial neural network[J]. Journal of Shenyang University of Technology, 2024, 46(1): 66-71.
doi: 10.7688/j.issn.1000-1646.2024.01.12
|
[18] |
满达, 张卓凡, 张金金, 等. 基于LSTM的高校建筑电力负荷预测方法[J]. 建筑电气, 2021, 40(11): 58-63.
|
|
MAN Da, ZHANG Zhuofan, ZHANG Jinjin, et al. Power load forecast method for university buildings based on LSTM[J]. Building Electricity, 2021, 40(11): 58-63.
|
[19] |
张腾达, 李琦, 陈波. 基于LSTM的热力站短期热负荷预测研究[J]. 计算机仿真, 2022, 39(9): 507-512.
|
|
ZHANG Tengda, LI Qi, CHEN Bo. Research on short-term heat load forecasting of thermal power station based on LSTM[J]. Computer Simulation, 2022, 39(9): 507-512.
|
[20] |
ZANG H X, XU R Q, CHENG L L, et al. Residential load forecasting based on LSTM fusing self-attention mechanism with pooling[J]. Energy, 2021, 229: 120682.
|
[21] |
SONG J C, ZHANG L Y, XUE G X, et al. Predicting hourly heating load in a district heating system based on a hybrid CNN-LSTM model[J]. Energy and Buildings, 2021, 243: 110998.
|
[22] |
RAFI S H, DEEBA S R, HOSSAIN E. A short-term load forecasting method using integrated CNN and LSTM network[J]. IEEE Access, 2021, 9: 32436-32448.
|
[23] |
GUO Y X, LI Y, QIAO X B, et al. BiLSTM multitask learning-based combined load forecasting considering the loads coupling relationship for multi energy system[J]. IEEE Transactions on Smart Grid, 2022, 13(5): 3481-3492.
|
[24] |
田浩含, 张智晟, 于道林. 基于改进LSTM的区域综合能源系统多元负荷短期预测研究[J]. 电力系统及其自动化学报, 2021, 33(9): 130-137.
|
|
TIAN Haohan, ZHANG Zhisheng, YU Daolin. Research on multi-load short-term forecasting of regional integrated energy system based on improved LSTM[J]. Proceedings of the CSU-EPSA, 2021, 33(9): 130-137.
|
[25] |
张文栋, 刘子琨, 梁涛, 等. 基于CNN-LSTM的综合能源系统负荷预测模型[J]. 重庆邮电大学学报(自然科学版), 2023, 35(2): 254-262.
|
|
ZHANG Wendong, LIU Zikun, LIANG Tao, et al. Load prediction model of integrated energy system based on CNN-LSTM[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2023, 35(2): 254-262.
|
[26] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
[27] |
GRAVES A. Supervised sequence labelling with recurrent neural networks[M]. Berlin: 2012.
|
[28] |
徐聪, 胡永锋, 张爱平, 等. 基于特征筛选的综合能源系统多元负荷日前-日内预测[J]. 综合智慧能源, 2024, 46(3): 45-53.
doi: 10.3969/j.issn.2097-0706.2024.03.006
|
|
XU Cong, HU Yongfeng, ZHANG Aiping, et al. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening[J]. Integrated Intelligent Energy, 2024, 46(3): 45-53.
doi: 10.3969/j.issn.2097-0706.2024.03.006
|
[29] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 5998-6008.
|