综合智慧能源 ›› 2024, Vol. 46 ›› Issue (2): 68-74.doi: 10.3969/j.issn.2097-0706.2024.02.009
孔慧超1, 王文钟1, 雷一2, 彭静2,*(), 李海波2
收稿日期:
2023-08-18
修回日期:
2023-10-19
出版日期:
2024-02-25
通讯作者:
*彭静(1982),女,高级工程师,硕士,从事电网规划技术研究,pengjing@tsinghua-eiri.org。作者简介:
孔慧超(1980),女,高级工程师,硕士,从事配电网规划与运行分析研究,296407833@qq.com;基金资助:
KONG Huichao1, WANG Wenzhong1, LEI Yi2, PENG Jing2,*(), LI Haibo2
Received:
2023-08-18
Revised:
2023-10-19
Published:
2024-02-25
摘要:
我国工业园区电能消耗占据了较高的比例,针对依托新型电力系统促进工业园区绿色低碳发展的需要,提出了一种面向工业园区受端新型电力系统的电力电量再平衡方法。首先,开展电力和电量需求预测并进行电力电量初平衡;然后,基于受端源网荷储协同作用并充分考虑园区节能、电能替代、各类分布式电源、储能和需求响应能力的作用进行电力电量再平衡,由此确定园区年度外调电和区内自产电的比例,进一步建立包含低碳效应和电力系统规模变化在内的量化指标评价体系,对电力电量再平衡带来的变配电容量缩减规模和降碳效用进行评价。以我国南方某工业园区新型电力系统的电力电量再平衡为例对以上方法进行了验证,结果表明:该园区2030年变配电规划容量可缩减10.1%,用电综合碳排放因子由0.60 kg/(kW·h)降至0.54 kg/(kW·h);2060年变配电规划容量可缩减9.57%,电能替代实现减碳5.85 万t/a,可为受端新型电力系统的电力电量平衡提供有力的理论支撑。
中图分类号:
孔慧超, 王文钟, 雷一, 彭静, 李海波. 园区受端新型电力系统电力电量再平衡方法[J]. 综合智慧能源, 2024, 46(2): 68-74.
KONG Huichao, WANG Wenzhong, LEI Yi, PENG Jing, LI Haibo. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks[J]. Integrated Intelligent Energy, 2024, 46(2): 68-74.
表1
电力电量初平衡
年份 | 电量/(TW·h) | 最大负荷/MW | 所需变配电容量/ (MV·A) | 220 kV变电站提供的10 kV供电容量/(MV·A) | 所需110 kV变电容量/(MV·A) |
---|---|---|---|---|---|
2020 | 3.532 | 542.1 | 1 192.7 | 155 | 1 037.7 |
2021 | 4.062 | 614.5 | 1 351.9 | 155 | 1 196.9 |
2022 | 4.614 | 705.5 | 1 552.2 | 155 | 1 397.2 |
2023 | 5.177 | 831.0 | 1 828.2 | 155 | 1 673.2 |
2024 | 5.736 | 927.4 | 2 040.4 | 155 | 1 885.4 |
2025 | 6.195 | 1 015.6 | 2 234.3 | 155 | 2 079.3 |
2026 | 6.629 | 1 094.2 | 2 407.3 | 258 | 2 149.3 |
2027 | 7.046 | 1 165.7 | 2 564.5 | 258 | 2 306.5 |
2028 | 7.441 | 1 234.0 | 2 714.8 | 258 | 2 456.8 |
2029 | 7.806 | 1 297.7 | 2 854.9 | 258 | 2 596.9 |
2030 | 8.079 | 1 346.5 | 2 962.2 | 258 | 2 704.2 |
2035 | 9.160 | 1 526.6 | 3 358.5 | 360 | 2 998.5 |
2040 | 10.063 | 1 677.2 | 3 689.9 | 360 | 3 329.9 |
2045 | 10.712 | 1 785.3 | 3 927.7 | 360 | 3 567.7 |
2050 | 11.243 | 1 873.9 | 4 122.6 | 480 | 3 642.6 |
2060 | 12.263 | 2 043.9 | 4 496.5 | 480 | 4 016.5 |
表2
新增燃气和光伏装机
年份 | 光伏 | 燃气 | ||
---|---|---|---|---|
新增电量/ (GW·h) | 新增装机/MW | 新增电量/ (GW·h) | 新增装机/MW | |
2021 | 20 | 20 | 0 | 0 |
2022 | 40 | 40 | 0 | 0 |
2023 | 60 | 60 | 0 | 0 |
2024 | 80 | 80 | 100 | 100 |
2025 | 100 | 100 | 300 | 100 |
2026 | 120 | 120 | 500 | 100 |
2027 | 140 | 140 | 700 | 200 |
2028 | 160 | 160 | 1 200 | 200 |
2029 | 180 | 180 | 1 500 | 300 |
2030 | 200 | 200 | 2 000 | 300 |
2035 | 220 | 220 | 2 500 | 400 |
2040 | 230 | 230 | 2 500 | 400 |
2045 | 240 | 240 | 2 500 | 400 |
2050 | 260 | 260 | 2 500 | 400 |
2055 | 270 | 270 | 2 500 | 400 |
2060 | 280 | 280 | 2 500 | 400 |
表3
电力电量再平衡结果
年份 | 所需 电量/(TW·h) | 起始最大负荷预测/MW | 110 kV及以下配电网 | 220 kV及以上输电网 | 最终网供电量/(TW·h) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
新增光伏电量/(GW·h) | 新增光伏装机/MW | 柔性负荷与储能削峰/MW | 所需变电容量/(MV·A) | 220 kV变电站提供的10 kV供电容量/(MV·A) | 所需110 kV变电容量/(MV·A) | 新增燃气电量/(TW·h) | 新增燃气装机/MW | 输变电负荷缩减幅度/MW | ||||
2020 | 3.532 | 542.1 | 0 | 0 | 32.5 | 1 121.1 | 155 | 966.1 | 0 | 0 | 32.5 | 3.532 |
2021 | 4.021 | 608.3 | 20 | 20 | 36.5 | 1 251.5 | 155 | 1 096.5 | 0 | 0 | 39.5 | 4.001 |
2022 | 4.568 | 698.5 | 40 | 40 | 41.9 | 1 431.3 | 155 | 1 276.3 | 0 | 0 | 47.9 | 4.528 |
2023 | 5.125 | 822.7 | 60 | 60 | 49.4 | 1 681.5 | 155 | 1 526.5 | 0 | 0 | 58.4 | 5.065 |
2024 | 5.679 | 918.2 | 80 | 80 | 55.1 | 1 872.4 | 155 | 1 717.4 | 0.1 | 100 | 117.1 | 5.499 |
2025 | 6.133 | 1 005.4 | 100 | 100 | 60.3 | 2 046.3 | 155 | 1 891.3 | 0.3 | 100 | 125.3 | 5.733 |
2026 | 6.496 | 1 072.3 | 120 | 120 | 64.3 | 2 178.0 | 258 | 1 920.0 | 0.5 | 100 | 132.3 | 5.876 |
2027 | 6.906 | 1 142.4 | 140 | 140 | 68.5 | 2 316.2 | 258 | 2 058.2 | 0.7 | 200 | 189.5 | 6.066 |
2028 | 7.292 | 1 209.3 | 160 | 160 | 72.6 | 2 448.1 | 258 | 2 190.1 | 1.2 | 200 | 196.6 | 5.932 |
2029 | 7.650 | 1 271.7 | 180 | 180 | 76.3 | 2 570.6 | 258 | 2 312.6 | 1.5 | 300 | 253.3 | 5.970 |
2030 | 7.917 | 1 319.5 | 200 | 200 | 79.2 | 2 662.8 | 258 | 2 404.8 | 2.0 | 300 | 259.2 | 5.717 |
2035 | 8.976 | 1 496.1 | 220 | 220 | 89.8 | 3 021.2 | 360 | 2 661.2 | 2.5 | 400 | 322.8 | 6.256 |
2040 | 9.761 | 1 626.9 | 230 | 230 | 97.6 | 3 288.5 | 360 | 2 928.5 | 2.5 | 400 | 332.1 | 7.031 |
2045 | 10.449 | 1 741.4 | 240 | 240 | 104.5 | 3 522.1 | 360 | 3 162.1 | 2.5 | 400 | 340.5 | 7.709 |
2050 | 11.008 | 1 834.7 | 260 | 260 | 110.1 | 3 708.3 | 480 | 3 228.3 | 2.5 | 400 | 349.1 | 8.248 |
2055 | 11.552 | 1 925.3 | 270 | 270 | 115.5 | 3 892.4 | 480 | 3 412.4 | 2.5 | 400 | 356.0 | 8.782 |
2060 | 12.065 | 2 010.9 | 280 | 280 | 120.7 | 4 066.1 | 480 | 3 586.1 | 2.5 | 400 | 362.7 | 9.285 |
[1] | 代心芸, 陈皓勇, 肖东亮, 等. 电力市场环境下工业需求响应技术的应用与研究综述[J]. 电网技术, 2022, 46(11):4169-4185. |
DAI Xinyun, CHEN Haoyong, XIAO Dongliang, et al. Review of applications and researches of industrial demand response technology under electricity market environment[J]. Power System Technology, 2022, 46(11):4169-4185. | |
[2] | COSSI A M, SILVA L WDA, LA Z R, et al. Primary power distribution systems planning taking into account reliability,operation and expansion costs[J]. IET Generation,Transmission & Distribution, 2012, 6(3):270-274. |
[3] | 肖先勇, 郑子萱. “双碳”目标下新能源为主体的新型电力系统:贡献、关键技术与挑战[J]. 工程科学与技术, 2022, 54(1):47-59. |
XIAO Xianyong, ZHENG Zixuan. New power systems dominated by renewable energy towards the goal of emission peak & carbon neutrality:Contribution, key techniques, and challenges[J]. Advanced Engineering Sciences, 2022, 54(1):47-59. | |
[4] |
ASENSIO M, PILAR M D Q, MUNOZ-DELGADO G, et al. Joint distribution network and renewable energy expansion planning considering demand response and energy storage—Part Ⅰ: Stochastic programming model[J]. IEEE Transactions on Smart Grid, 2018, 9(2):655-666.
doi: 10.1109/TSG.2016.2560339 |
[5] |
DYSON M E, BORGESON S D, TABONE M D, et al. Using smart meter data to estimate demand response potential with application to solar energy integration[J]. Energy Policy, 2014, 73:607-619.
doi: 10.1016/j.enpol.2014.05.053 |
[6] | 曾鸣, 杨雍琦, 刘敦楠, 等. 能源互联网“源-网-荷-储”协调优化运营模式及关键技术[J]. 电网技术, 2016, 40(1):114-124. |
ZENG Ming, YANG Yongqi, LIU Dunnan, et al. "Generation-grid-load-storage" coordinative optimal operation mode of Energy Internet and key technologies[J]. Power System Technology, 2016, 40(1):114-124. | |
[7] |
HONG T, FAN S. Probabilistic electric load forecasting: A tutorial review[J]. International Journal of Forecasting, 2016, 32(3):914-938.
doi: 10.1016/j.ijforecast.2015.11.011 |
[8] |
ACOSTA J S, JUAN C L, RIDER M J. Optimal multi-scenario, multi-objective allocation of fault indicators in electrical distribution systems using a mixed-integer linear programming model[J]. IEEE Transactions on Smart Grid, 2019, 10(4):4508-4519.
doi: 10.1109/TSG.5165411 |
[9] | 刘文彬, 刘永刚, 文祥宇, 等. 基于需求响应的居民侧柔性负荷多目标优化研究[J]. 山东电力技术, 2022, 49(8):42-49. |
LIU Wenbin, LIU Yonggang, WEN Xiangyu, et al. Research on multi-objective optimization of residential flexible loads based on demand response[J]. Shandong Electric Power, 2022, 49(8):42-49. | |
[10] |
刘自发, 谭雅之, 李炯, 等. 区域综合能源系统规划关键问题研究综述[J]. 综合智慧能源, 2022, 44(6):12-24.
doi: 10.3969/j.issn.2097-0706.2022.06.002 |
LIU Zifa, TAN Yazhi, LI Jiong, et al. Review on key points in the planning for a district-level integrated energy system[J]. Integrated Intelligent Energy, 2022, 44(6):12-24.
doi: 10.3969/j.issn.2097-0706.2022.06.002 |
|
[11] |
BATASBJELIĆ I R, ŠKOKLJEV I A, PUKŠEC T, et al. Integrating the flexibility of the average Serbian consumer as a virtual storage option into the planning of energy systems[J]. Thermal Science, 2014, 18(3):743-754.
doi: 10.2298/TSCI1403743B |
[12] | 陈涛, 邢金晶, 刘闯, 等. 基于改进PSO-DE融合算法的风电场储能容量优化配置[J]. 山东电力技术, 2023, 50(1):8-13. |
CHEN Tao, XING Jinjing, LIU Chuang, et al. Optimal allocation of wind farm energy storage capacity based on improved PSO-DE fusion algorithm[J]. Shandong Electric Power, 2023, 50(1):8-13. | |
[13] |
侯鲁洋, 葛磊蛟, 王飚, 等. 面向新型产消者的综合能源系统和电力市场研究[J]. 综合智慧能源, 2022, 44(12):40-48.
doi: 10.3969/j.issn.2097-0706.2022.12.006 |
HOU Luyang, GE Leijiao, WANG Biao, et al. Research on the integrated energy system and the electricity market towards new presumes[J]. Integrated Intelligent Energy, 2022, 44(12):40-48.
doi: 10.3969/j.issn.2097-0706.2022.12.006 |
|
[14] | 刘自发, 于普洋, 高建宇, 等. 考虑电能替代效果的综合能源系统效益评价方法研究[J]. 供用电, 2022, 39(5):3-12. |
LIU Zifa, YU Puyang, GAO Jianyu, et al. Research on the evaluation method of integrated energy system efficiency considering the effect of electric energy substitution[J]. Distribution & Utilization, 2022, 39(5):3-12 | |
[15] | 屈博, 刘畅, 卜凡鹏, 等. 能源结构转型背景下的电能替代发展路径探索[J]. 电力需求侧管理, 2022, 24(6):1-5. |
QU Bo, LIU Chang, BU Fanpeng, et al. Exploration of development path of electric energy substitution under energy structure transformation[J]. Power Demand Side Management, 2022, 24(6):1-5. | |
[16] |
温港成, 石鑫, 张怡, 等. 考虑设备变工况特性的园区综合能源系统两阶段规划优化方法研究[J]. 综合智慧能源, 2022, 44(10):1-11.
doi: 10.3969/j.issn.2097-0706.2022.10.001 |
WEN Gangcheng, SHI Xin, ZHANG Yi, et al. Research on two-stage planning optimization approach for community integrated energy systems considering off-design conditions[J]. Integrated Intelligent Energy, 2022, 44(10):1-11.
doi: 10.3969/j.issn.2097-0706.2022.10.001 |
|
[17] | 李明. 适应能源电力新形势的“供电+能效服务”模式创新发展研究[J]. 电力需求侧管理, 2022, 24(1):1-6. |
LI Ming. Study on innovation and development of "power+energy efficiency service" mode adapting to new energy and power situation[J]. Power Demand Side Management, 2022, 24(1):1-6. | |
[18] | VIRAL R, KHATOD D K. Optimal planning of distributed generation systems in distribution system: A review[J]. Renewable & Sustainable Energy Reviews, 2012, 16(7):5146-5165. |
[19] |
TANCREDO BORGES C L, MARTINS V F. Multistage expansion planning for active distribution networks under demand and distributed generation uncertainties[J]. International Journal of Electrical Power & Energy Systems, 2012, 36(1):107-116.
doi: 10.1016/j.ijepes.2011.10.031 |
[20] | 魏国民, 何俊, 熊凤龙. 面向新型电力系统的源网荷储一体化电力平衡方法研究[J]. 电工技术, 2022(18): 34-38. |
WEI Guomin, HE Jun, XIONG Fenglong. Researches on integrated power balance method of source-network-load-storage for new power system[J]. Electrical Technology, 2022(18): 34-38. | |
[21] | 韩凝晖, 周颖, 石坤, 等. 面向新型电力系统电量平衡的可调节负荷互动潜力分析[J]. 电力需求侧管理, 2022, 24(6):70-76. |
HAN Ninghui, ZHOU Ying, SHI Kun, et al. Adjustable load interaction potential oriented to power balance of new power system[J]. Power Demand Side Management, 2022, 24(6):70-76. | |
[22] | 霍佳丽, 叶辛頔, 何卫斌, 等. 考虑广义负荷的配电网弹性电力电量平衡策略研究[J]. 浙江电力, 2022, 41(1):19-25. |
HUO Jiali, YE Xindi, HE Weibin, et al. Study of an elastic electric power and energy balance strategy for distribution networks considering generalized loads[J]. Zhejiang Electric Power, 2022, 41(1):19-25. | |
[23] |
STEVANONI C, DE GRÈVE Z, VALLÉE F, et al. Long-term planning of connected industrial microgrids: A game theoretical approach including daily peer-to-microgrid exchanges[J]. IEEE Transactions on Smart Grid, 2019, 10(2):2245-2256.
doi: 10.1109/TSG.5165411 |
[24] | 张运洲, 张宁, 代红才, 等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力, 2021, 54(3):1-11. |
ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China's power system[J]. Electric Power, 2021, 54(3):1-11. | |
[25] | 张子阳, 张聂鹏, 王满商, 等. 面向可再生能源高比例消纳的综合能源系统优化规划模型研究[J]. 可再生能源, 2020, 38(8):1085-1091. |
ZHANG Ziyang, ZHANG Niepeng, WANG Manshang, et al. Research on optimal planning model of integrated energy system for high proportion of renewable energy utilization[J]. Renewable Energy Resources, 2020, 38(8):1085-1091. | |
[26] |
WEI W, LIU F, MEI S W. Nash bargain and complementarily approach based environmental/economic dispatch[J]. IEEE Transactions on Power Systems, 2015, 30(3):1548-1549.
doi: 10.1109/TPWRS.2014.2346928 |
[27] |
SINGH R K, MURTY H R, GUPTA S K, et al. An overview of sustainability assessment methodologies[J]. Ecological Indicators, 2009, 9(2):189-212.
doi: 10.1016/j.ecolind.2008.05.011 |
[28] | WEI W, GAO H, XU T, et al. Active distribution network sustainability assessment: A system dynamic approach[C]//2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2017. |
[29] | CALIF P A. Research into load forecasting and distribution[M]. Palo Alto: Electric Power Research Institute, 1979. |
[1] | 王泽宁, 李文中, 李东辉, 徐泰山, 俞俊. 基于软件定义的新型电力系统分层自治电力平衡模式研究[J]. 综合智慧能源, 2024, 46(7): 1-11. |
[2] | 何方波, 裴力耕, 郑睿, 范康健, 张晓曼, 李更丰. “源网荷储”协同助力陕西省新型电力系统建设[J]. 综合智慧能源, 2024, 46(7): 40-46. |
[3] | 徐智帆, 李华森, 李文院, 余凯. 基于递归小脑模型神经网络和卡尔曼滤波器的锂电池荷电状态预测[J]. 综合智慧能源, 2024, 46(7): 81-86. |
[4] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[5] | 王林, 孔小民, 周忠玉, 刘建平, 王晓东, 张宁. 云储能模式下的配电网分布式光伏-储能无功优化方法[J]. 综合智慧能源, 2024, 46(6): 44-53. |
[6] | 张勋祥, 吴杰康, 孙烨桦, 彭其坚. 平抑海上风电波动的混合储能系统容量优化配置[J]. 综合智慧能源, 2024, 46(6): 54-65. |
[7] | 郁海彬, 卢闻州, 唐亮, 张煜晨, 邹翔宇, 姜玉靓, 刘嘉宝. 考虑风险偏好的多主体虚拟电厂经济调度与收益分配策略[J]. 综合智慧能源, 2024, 46(6): 66-77. |
[8] | 王亮, 邓松. 面向新型电力系统的异常数据检测方法[J]. 综合智慧能源, 2024, 46(5): 12-19. |
[9] | 俞胜, 周霞, 沈希澄, 戴剑丰, 刘增稷. 考虑网络攻击影响的源网荷储系统风险评估[J]. 综合智慧能源, 2024, 46(5): 41-49. |
[10] | 龚钢军, 王路遥, 常卓越, 柳旭, 邢汇笛. 基于能源枢纽的综合能源信息物理系统安全防护架构研究[J]. 综合智慧能源, 2024, 46(5): 65-72. |
[11] | 李云, 周世杰, 胡哲千, 梁均原, 肖雷鸣. 基于NSGA-Ⅱ-WPA的综合能源系统多目标优化调度[J]. 综合智慧能源, 2024, 46(4): 1-9. |
[12] | 董强, 徐君, 方东平, 方丽娟, 陈妍琼. 基于光伏出力特性的分布式光储系统优化调度策略[J]. 综合智慧能源, 2024, 46(4): 17-23. |
[13] | 陈勇, 肖雷鸣, 王井南, 吴健. 基于场景扩充的低碳综合能源系统高可靠性容量规划方法[J]. 综合智慧能源, 2024, 46(4): 24-33. |
[14] | 缪月森, 夏红军, 黄宁洁, 李云, 周世杰. 基于Informer的负荷及光伏出力系数预测[J]. 综合智慧能源, 2024, 46(4): 60-67. |
[15] | 王永利, 王亚楠, 马子奔, 秦雨萌, 陈锡昌, 滕越. 面向区块链技术应用的能源交易系统效果评价[J]. 综合智慧能源, 2024, 46(4): 78-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||