综合智慧能源 ›› 2025, Vol. 47 ›› Issue (4): 1-22.doi: 10.3969/j.issn.2097-0706.2025.04.001
• 博弈论与电力市场决策 • 下一篇
收稿日期:
2024-09-19
修回日期:
2024-12-23
出版日期:
2025-04-25
通讯作者:
* 邹涛(1975),男,教授,硕士生导师,博士,从事电力系统优化运行与控制、工业实时优化与先进过程控制、智能无人系统等方面的研究,tzou@gzhu.edu.cn。作者简介:
程乐峰(1990),男,副教授,硕士生导师,博士,从事电力系统优化运行与控制、博弈论、电力市场等方面的研究,chenglefeng@gzhu.edu.cn;基金资助:
CHENG Lefeng(), LIU Yihang(
), ZOU Tao*(
)
Received:
2024-09-19
Revised:
2024-12-23
Published:
2025-04-25
Supported by:
摘要:
随着智能电网的快速发展与电力体制改革的深化,需求侧用户作为购电与售电双重身份的主体,如何在开放式电力市场中有效参与并实现多方共赢,成为当前研究的热点与难点。从博弈论视角出发,综合梳理并分析了智能电网需求响应(DR)的主要理论方法与实践应用。总结了电力需求侧的典型博弈模型及其分类,包括静态博弈、动态博弈、演化博弈与合作博弈等;探讨了在分布式能源管理、虚拟电厂与微电网环境下,博弈论用于DR优化、收益分配以及用户行为建模等方面的实现路径;针对不同模型在处理多主体决策、复杂网络结构与信息不对称等问题时的适用性和不足进行了深入剖析。综述表明,博弈论在多主体决策场景下具备出色的灵活性与适应性,尤其在应对用户负荷转移、可再生能源波动和价格激励设计等方面具有显著优势。随着电力市场与智能电网规模的不断扩大,动态博弈模型的计算成本、多代理系统中的协同机制设计以及信息不对称导致的策略不确定性问题依然突出。通过引入大数据与人工智能技术,可望进一步提升博弈模型在高维度、不完全信息及实时响应环境中的可行性与效率。总体而言,博弈论为解决智能电网需求侧响应中的多主体交互优化问题提供了重要理论支撑和技术手段。今后的研究可进一步拓展混合博弈模型,结合区块链等新兴技术完善用户数据共享与结算机制,推进多能耦合与跨学科协同调度,为电网安全、经济与低碳运行提供更加全面而高效的解决方案。
中图分类号:
程乐峰, 刘奕杭, 邹涛. 博弈论视角下智能电网需求响应研究综述[J]. 综合智慧能源, 2025, 47(4): 1-22.
CHENG Lefeng, LIU Yihang, ZOU Tao. Review of demand response in smart grids from the perspective of game theory[J]. Integrated Intelligent Energy, 2025, 47(4): 1-22.
[1] | 刘振亚. 全球能源互联网跨国跨洲互联研究及展望[J]. 中国电机工程学报, 2016, 36(19): 5103-5110, 5391. |
LIU Zhenya. Research of global clean energy resource and power grid interconnection[J]. Proceedings of the CSEE, 2016, 36(19): 5103-5110, 5391. | |
[2] | 肖世杰. 构建中国智能电网技术思考[J]. 电力系统自动化, 2009, 33(9): 1-4. |
XIAO Shijie. Consideration of technology for constructing Chinese smart grid[J]. Automation of Electric Power Systems, 2009, 33(9): 1-4. | |
[3] | SRIKANTHA P, KUNDUR D. A novel evolutionary game theoretic approach to real-time distributed Demand response[C]// Proceedings of 2015 IEEE Power & Energy Society General Meeting. IEEE, 2015: 1-5. |
[4] | WAN Y N, QIN J H, SHI Y, et al. Stackelberg —Nash game approach for price-based demand response in retail electricity trading[J]. International Journal of Electrical Power & Energy Systems, 2024, 155: 109577. |
[5] | 王蓓蓓. 面向智能电网的用户需求响应特性和能力研究综述[J]. 中国电机工程学报, 2014, 34(22): 3654-3663. |
WANG Beibei. Research on consumers' response characterics and ability under smart grid:A literatures survey[J]. Proceedings of the CSEE, 2014, 34(22): 3654-3663. | |
[6] | 张钦, 王锡凡, 王建学, 等. 电力市场下需求响应研究综述[J]. 电力系统自动化, 2008, 32(3): 97-106. |
ZHANG Qin, WANG Xifan, WANG Jianxue, et al. Survey of demand response research in deregulated electricity markets[J]. Automation of Electric Power Systems, 2008, 32(3): 97-106. | |
[7] | 王蓓蓓, 李扬, 高赐威. 智能电网框架下的需求侧管理展望与思考[J]. 电力系统自动化, 2009, 33(20): 17-22. |
WANG Beibei, LI Yang, GAO Ciwei. Demand side management outlook under smart grid infrastructure[J]. Automation of Electric Power Systems, 2009, 33(20):17-22. | |
[8] |
张建华, 马丽, 刘念. 博弈论在微电网中的应用及展望[J]. 电力建设, 2016, 37(6): 55-61.
doi: 10.3969/j.issn.1000-7229.2016.06.009 |
ZHANG Jianhua, MA Li, LIU Nian. Application and prospect of game theory in microgrid[J]. Electric Power Construction, 2016, 37(6): 55-61.
doi: 10.3969/j.issn.1000-7229.2016.06.009 |
|
[9] | 杜预则, 董海鹰. 基于主从博弈的储能电站协同源荷消纳新能源调控策略[J]. 综合智慧能源, 2023, 45(11): 1-9. |
DU Yuze, DONG Haiying. Research on the source-load-storage collaborative scheduling strategy for new energy accommodation based on Stackelberg game[J]. Integrated Intelligent Energy, 2023, 45(11): 1-9.
doi: 10.3969/j.issn.2097-0706.2023.11.001 |
|
[10] | MILLER M, DUNCAN S, MAVRIS D. A game theoretic approach for smart grid demand response using system dynamics[C]// Proceedings of 10th International Energy Conversion Engineering Conference. Virginia: AIAA, 2012: 3730. |
[11] | CHENG L F, WEI X, LI M L, et al. Integrating evolutionary game-theoretical methods and deep reinforcement learning for adaptive strategy optimization in user-side electricity markets: A comprehensive review[J]. Mathematics, 2024, 12(20): 3241. |
[12] | US Department of Energy. Benefits of demand response in electricity markets and recommendations for achieving them: A report to the United State Congress pursuant to section 1252 of the Energy Policy Act of 2005[R]. Washington DC: US Department of Energy, 2006. |
[13] | PHILPOTT A B, PETTERSEN E. Optimizing demand-side bids in day-ahead electricity markets[J]. IEEE Transactions on Power Systems, 2006, 21(2): 488-498. |
[14] | CHENG L F, YU T. Game-theoretic approaches applied to transactions in the open and ever-growing electricity markets from the perspective of power demand response: An overview[J]. IEEE Access, 2019, 7: 25727-25762. |
[15] | 梅生伟, 刘锋, 魏韡. 工程博弈论基础及电力系统应用[M]. 北京: 科学出版社, 2016: 56-190. |
[16] | 刘豹, 唐万生. 现代控制理论[M]. 3版. 北京: 机械工业出版社, 2006. |
[17] | 张虹, 马鸿君, 闫贺, 等. 计及WCVaR评估的微电网供需协同两阶段日前优化调度[J]. 电力系统自动化, 2021, 45(2): 55-63. |
ZHANG Hong, MA Hongjun, YAN He, et al. Two-stage day-ahead optimal microgrid scheduling with coordination between supply and demand considering WCVaR assessment[J]. Automation of Electric Power Systems, 2021, 45(2): 55-63. | |
[18] | 刘晓峰, 高丙团, 李扬. 博弈论在电力需求侧的应用研究综述[J]. 电网技术, 2018, 42(8): 2704-2711. |
LIU Xiaofeng, GAO Bingtuan, LI Yang. Review on application of game theory in power demand side[J]. Power System Technology, 2018, 42(8): 2704-2711. | |
[19] | TANG R, WANG S W, LI H X. Game theory based interactive demand side management responding to dynamic pricing in price-based demand response of smart grids[J]. Applied Energy, 2019, 250: 118-130. |
[20] | SOFANA REKA S, RAMESH V. A demand response modeling for residential consumers in smart grid environment using game theory based energy scheduling algorithm[J]. Ain Shams Engineering Journal, 2016, 7(2): 835-845. |
[21] | 屈德强, 李军祥, 王溪. 基于博弈解析的智能电网实时定价策略[J/OL]. 系统工程理论与实践, 2024: 1-12 (2024-06-15)[2024-09-10]. https://kns.cnki.net/kcms/detail/11.2267.N.20240614.1743.026.html. |
QU Deqiang, LI Junxiang, WANG Xi. Real-time pricing strategy of smart grid based on game analysis[J/OL]. Systems Engineering-Theory & Practice, 2024: 1-12 (2024-06-15) [2024-09-10]. https://kns.cnki.net/kcms/detail/11.2267.N.20240614.1743.026.html. | |
[22] | SAAD W, HAN Z, POOR H V, et al. Game-theoretic methods for the smart grid: An overview of microgrid systems, demand-side management, and smart grid communications[J]. IEEE Signal Processing Magazine, 2012, 29(5): 86-105. |
[23] | ZHU Q Y, HAN Z, BAŞAR T.A differential game approach to distributed demand side management in smart grid[C]//Proceedings of 2012 IEEE International Conference on Communications (ICC). IEEE, 2012: 3345-3350. |
[24] | GHORBANIAN M, DOLATABADI S H, SIANO P. Game theory-based energy-management method considering autonomous demand response and distributed generation interactions in smart distribution systems[J]. IEEE Systems Journal, 2021, 15(1): 905-914. |
[25] | IPAKCHI A, ALBUYEH F. Grid of the future[J]. IEEE Power and Energy Magazine, 2009, 7(2): 52-62. |
[26] | 栾文鹏. 高级量测体系[J]. 南方电网技术, 2009, 3(2): 6-10. |
LUAN Wenpeng. Advanced metering infrastructure[J]. Southern Power System Technology, 2009, 3(2): 6-10. | |
[27] | 高赐威, 梁甜甜, 李扬. 自动需求响应的理论与实践综述[J]. 电网技术, 2014, 38(2): 352-359. |
GAO Ciwei, LIANG Tiantian, LI Yang. A survey on theory and practice of automated demand response[J]. Power System Technology, 2014, 38(2): 352-359. | |
[28] | CHEN Y L, LI Y F, CHEN Q, et al. Energy trading scheme based on consortium blockchain and game theory[J]. Computer Standards & Interfaces, 2023, 84: 103699. |
[29] | MOHSENI S, PISHVAEE M S. Energy trading and scheduling in networked microgrids using fuzzy bargaining game theory and distributionally robust optimization[J]. Applied Energy, 2023, 350: 121748. |
[30] | WANG Z B, DONG L, SHI M J, et al. Market power modeling and restraint of aggregated prosumers in peer-to-peer energy trading: A game-theoretic approach[J]. Applied Energy, 2023, 348: 121550. |
[31] | LIU X F, JI Z Y, SUN W Q, et al. Robust game-theoretic optimization for energy management in community-based energy system[J]. Electric Power Systems Research, 2023, 214: 108939. |
[32] | HEIDARYKIANY R, ABABEI C. HVAC energy cost minimization in smart grids: A cloud-based demand side management approach with game theory optimization and deep learning[J]. Energy and AI, 2024, 16: 100362. |
[33] | YAN X Y, GAO C W, MING H, et al. Optimal scheduling strategy and benefit allocation of multiple virtual power plants based on general Nash bargaining theory[J]. International Journal of Electrical Power & Energy Systems, 2023, 152: 109218. |
[34] | MOAFI M, ARDESHIRI R R, MUDIYANSELAGE M W, et al. Optimal coalition formation and maximum profit allocation for distributed energy resources in smart grids based on cooperative game theory[J]. International Journal of Electrical Power & Energy Systems, 2023, 144: 108492. |
[35] | GAUTAM M, BENIDRIS M. A graph theory and coalitional game theory-based pre-positioning of movable energy resources for enhanced distribution system resilience[J]. Sustainable Energy, Grids and Networks, 2023, 35: 101095. |
[36] | ADITHAM S, RANGANATHAN N.An energy-aware scheduling heuristic for distributed systems using non-cooperative games[C]//Proceedings of 2015 Sixth International Green and Sustainable Computing Conference (IGSC). IEEE, 2015: 1-6. |
[37] | AN L, DUAN J, CHOW M Y, et al. A distributed and resilient bargaining game for weather-predictive microgrid energy cooperation[J]. IEEE Transactions on Industrial Informatics, 2019, 15(8): 4721-4730. |
[38] | CARLI R, DOTOLI M, PALMISANO V.A distributed control approach based on game theory for the optimal energy scheduling of a residential microgrid with shared generation and storage[C]//Proceedings of 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). IEEE, 2019: 8843141. |
[39] | HAN L Y, MORSTYN T, MCCULLOCH M. Incentivizing prosumer coalitions with energy management using cooperative game theory[J]. IEEE Transactions on Power Systems, 2019, 34(1): 303-313. |
[40] | DU Y, WANG Z W, LIU G Y, et al. A cooperative game approach for coordinating multi-microgrid operation within distribution systems[J]. Applied Energy, 2018, 222: 383-395. |
[41] | ESSAYEH C, FENNI M REL, DAHMOUNI H. Optimization of energy exchange in microgrid networks: A coalition formation approach[J]. Protection and Control of Modern Power Systems, 2019, 4(4): 1-10. |
[42] | WANG G, CHAO Y C, CAO Y, et al. A comprehensive review of research works based on evolutionary game theory for sustainable energy development[J]. Energy Reports, 2022, 8: 114-136. |
[43] | TUSHAR W, SAHA T K, YUEN C, et al. A motivational game-theoretic approach for peer-to-peer energy trading in the smart grid[J]. Applied Energy, 2019, 243: 10-20. |
[44] | 李梦婷. 区域综合能源系统集群多主体博弈协同优化[D]. 北京: 华北电力大学, 2022. |
LI Mengting. Coordinated optimization of multi-agent game in regional integrated energy system cluster[D]. Beijing: North China Electric Power University, 2022. | |
[45] | FAN S L, LI Z S, WANG J H, et al. Cooperative economic scheduling for multiple energy hubs: A bargaining game theoretic perspective[J]. IEEE Access, 2018, 6: 27777-27789. |
[46] | CHEN C M, LI Y, QIU W Q, et al. Cooperative-game-based day-ahead scheduling of local integrated energy systems with shared energy storage[J]. IEEE Transactions on Sustainable Energy, 2022, 13(4): 1994-2011. |
[47] | QUERINI P L, CHIOTTI O, FERNÁDEZ E. Cooperative energy management system for networked microgrids[J]. Sustainable Energy, Grids and Networks, 2020, 23: 100371. |
[48] | GAO X D, ZHANG X Y. Robust collaborative scheduling strategy for multi-microgrids of renewable energy based on a non-cooperative game and profit allocation mechanism[J]. Energies, 2024, 17(2): 519. |
[49] | DE LA FUENTE T, ESPINA E, PLITT M, et al. A review of non-cooperative game-theoretic control strategies for micro-grids[C]// Proceedings of 2024 IEEE International Conference on Automation/XXVI Congress of the Chilean Association of Automatic Control (ICA-ACCA). IEEE, 2024: 1-6. |
[50] | AMIN W, HUANG Q, AFZAL M, et al. A converging non-cooperative & cooperative game theory approach for stabilizing peer-to-peer electricity trading[J]. Electric Power Systems Research, 2020, 183: 106278. |
[51] | PÁRRAGA M, FAJARDO A, RODRÍGUEZ-URREGO L, et al. A non-cooperative game approach on isolated water-energy microgrids[J]. Sustainable Energy, Grids and Networks, 2024, 38: 101392. |
[52] | CHENG L F, ZHANG J, YIN L F, et al. General three-population multi-strategy evolutionary games for long-term on-grid bidding of generation-side electricity market[J]. IEEE Access, 2020, 9: 5177-5198. |
[53] | PRETE CLO, HOBBS B F. A cooperative game theoretic analysis of incentives for microgrids in regulated electricity markets[J]. Applied Energy, 2016, 169: 524-541. |
[54] | BELGANA A, RIMAL B P, MAIER M. Open energy market strategies in microgrids: A Stackelberg game approach based on a hybrid multiobjective evolutionary algorithm[J]. IEEE Transactions on Smart Grid, 2015, 6(3): 1243-1252. |
[55] | GAO H J, ZHONG L, LIU J Y, et al. Interactive trading model among multiple market participants based on hierarchical game frame in distribution network[C]// Proceedings of 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE). IEEE, 2021: 611-615. |
[56] | BALAGOPALAN S, ANOOJA V S. Cooperative game theory for sharing transmission charges in electricity markets[C]// Proceedings of IET Conference on Reliability of Transmission and Distribution Networks (RTDN 2011). London: IET, 2011: 1-6. |
[57] | XIE X Y, YING L M, CUI X. Price strategy analysis of electricity retailers based on evolutionary game on complex networks[J]. Sustainability, 2022, 14(15):9487. |
[58] | PAN M M, TIAN S M, WANG L F, et al. Evolutionary game analysis of demand response of power users' participation[J]. IOP Conference Series: Materials Science and Engineering, 2018, 394: 042078. |
[59] | CHENG L F, YIN L F, WANG J H, et al. Behavioral decision-making in power demand-side response management: A multi-population evolutionary game dynamics perspective[J]. International Journal of Electrical Power & Energy Systems, 2021, 129: 106743. |
[60] | PAN C R, LONG Y. Evolutionary game analysis of cooperation between microgrid and conventional grid[J]. Mathematical Problems in Engineering, 2015, 2015(6): 1-10. |
[61] | ZHU B, XIA X H, WU Z. Evolutionary game theoretic demand-side management and control for a class of networked smart grid[J]. Automatica, 2016, 70: 94-100. |
[62] | CHAI B, CHEN J M, YANG Z Y, et al. Demand response management with multiple utility companies: A two-level game approach[J]. IEEE Transactions on Smart Grid, 2014, 5(2): 722-731. |
[63] | GABA M, CHANANA S. A non-cooperative game based energy management considering distributed energy resources in price-based and incentive-based demand response program[J]. International Journal of Emerging Electric Power Systems, 2021, 22(6): 807-830. |
[64] | BELHAIZA S, BAROUDI U. A game theoretic model for smart grids demand management[J]. IEEE Transactions on Smart Grid, 2015, 6(3): 1386-1393. |
[65] | LU R Z, HONG S H, ZHANG X F. A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach[J]. Applied Energy, 2018, 220: 220-230. |
[66] | APOSTOLOPOULOS P A, TSIROPOULOU E E, PAPAVASSILIOU S. Demand response management in smart grid networks: A two-stage game-theoretic learning-based approach[J]. Mobile Networks and Applications, 2021, 26(2): 548-561. |
[67] | TANG D G, FANG Y P, ZIO E. A zero-sum Markov defender-attacker game for modeling false pricing in smart grids and its solution by multi-agent reinforcement learning[C]// Proceedings of the 29th European Safety and Reliability Conference (ESREL), 2019. |
[68] | ALADDIN S, EL-TANTAWY S, FOUDA M M, et al. MARLA-SG: Multi-agent reinforcement learning algorithm for efficient demand response in smart grid[J]. IEEE Access, 2020, 8: 210626-210639. |
[69] | PILZ M, AL-FAGIH L. Recent advances in local energy trading in the smart grid based on game-theoretic approaches[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 1363-1371. |
[70] | LONI A, PARAND F A.A survey of game theory approach in smart grid with emphasis on cooperative games[C]//Proceedings of 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC). IEEE, 2017: 237-242. |
[71] | ABAPOUR S, NAZARI-HERIS M, MOHAMMADI-IVATLOO B, et al. Game theory approaches for the solution of power system problems: A comprehensive review[J]. Archives of Computational Methods in Engineering, 2020, 27(1): 81-103. |
[72] | NAVON A, YOSEF GBEN, MACHLEV R, et al. Applications of game theory to design and operation of modern power systems: A comprehensive review[J]. Energies, 2020, 13(15): 3982. |
[73] | CHURKIN A, BIALEK J, POZO D, et al. Review of Cooperative Game Theory applications in power system expansion planning[J]. Renewable and Sustainable Energy Reviews, 2021, 145: 111056. |
[74] | BHATTACHARYA S, CHENGODEN R, SRIVASTAVA G, et al. Incentive mechanisms for smart grid: State of the art, challenges, open issues, future directions[J]. Big Data and Cognitive Computing, 2022, 6(2): 47. |
[75] | GU S D, YANG L, DU Y L, et al. A review of safe reinforcement learning: Methods, theories, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 11216-11235. |
[76] | HAN Y H, WU J R, CHEN H Q, et al. Enhancing grid-interactive buildings demand response: Sequential update-based multiagent deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2024, 11(14): 24439-24451. |
[77] | MAI V, MAISONNEUVE P, ZHANG T Y, et al. Multi-agent reinforcement learning for fast-timescale demand response of residential loads[J]. Machine Learning, 2024, 113(8): 5203-5234. |
[78] | YI W F, ZHANG Y W, ZHAO Z B, et al. Multiobjective robust scheduling for smart distribution grids: Considering renewable energy and demand response uncertainty[J]. IEEE Access, 2018, 6: 45715-45724. |
[79] | MAHMOUDI M, AFSHARCHI M, KHODAYIFAR S. Demand response management in smart homes using robust optimization[J]. Electric Power Components and Systems, 2020, 48(8): 817-832. |
[80] | QIAN T, LIANG Z Y, SHAO C C, et al. Offline DRL for price-based demand response: Learning from suboptimal data and beyond[J]. IEEE Transactions on Smart Grid, 2024, 15(5): 4618-4635. |
[81] | WANG J Q, GAO Y, LI R J. Reinforcement learning based bilevel real-time pricing strategy for a smart grid with distributed energy resources[J]. Applied Soft Computing, 2024, 155: 111474. |
[1] | 冯剑冰, 余涛, 程乐峰. 自愈控制方法及其在地铁供电系统中的应用研究与展望[J]. 综合智慧能源, 2025, 47(4): 41-62. |
[2] | 邸亮, 董杰, 闫馨月, 甄成, 田喆, 牛纪德. 用于市场准入条件判定的建筑需求响应潜力量化方法[J]. 综合智慧能源, 2025, 47(3): 15-22. |
[3] | 张冬冬, 单琳珂, 刘天皓. 人工智能技术在风力与光伏发电数据挖掘及功率预测中的应用综述[J]. 综合智慧能源, 2025, 47(3): 32-46. |
[4] | 张冬冬, 李芳凝, 刘天皓. 新型电力系统负荷预测关键技术及多元场景应用[J]. 综合智慧能源, 2025, 47(3): 47-61. |
[5] | 江美慧, 许镇江, 牛统科, 朱虹谕, 李想. 考虑综合需求响应的矿区综合能源系统日内多时间尺度滚动优化调度[J]. 综合智慧能源, 2025, 47(3): 73-83. |
[6] | 崔再岳, 杨扬, 王立地. 考虑负荷需求响应的配电网三相不平衡优化[J]. 综合智慧能源, 2025, 47(3): 92-101. |
[7] | 刘斌, 孙周, 姜之未, 郭明阳, 曹灿. 数字化赋能交通能源融合:技术路径、应用场景与未来展望[J]. 综合智慧能源, 2025, 47(2): 1-12. |
[8] | 石鑫, 刘奇央, 高峰. 深度神经网络在新型能源系统中的应用及展望[J]. 综合智慧能源, 2025, 47(2): 88-101. |
[9] | 袁孝科, 沈石兰, 张茂松, 石晨旭, 杨凌霄. 基于可解释强化学习的智能虚拟电厂最优调度[J]. 综合智慧能源, 2025, 47(1): 1-9. |
[10] | 苏锐, 王希龙, 江阎, 宋晨辉. 基于改进成本分配法的虚拟电厂调度规划[J]. 综合智慧能源, 2025, 47(1): 10-17. |
[11] | 江阎, 宋晨辉, 张宁, 贺波, 卢宇婷. 考虑多能耦合的虚拟电厂优化运行模型与策略研究[J]. 综合智慧能源, 2025, 47(1): 34-41. |
[12] | 曲琪, 滕菲, 郭禹辛, 张琳雪. 考虑算力需求的港口综合能源系统分布式能源管理[J]. 综合智慧能源, 2025, 47(1): 42-50. |
[13] | 胡嘉诚, 张宁, 曹雨桐, 胡存刚. 分布式能源接入下虚拟电厂负荷优化调度决策[J]. 综合智慧能源, 2025, 47(1): 62-69. |
[14] | 李明, 胡楠, 刘鑫蕊. 考虑电动汽车公平性的虚拟电厂优化运行策略[J]. 综合智慧能源, 2025, 47(1): 70-78. |
[15] | 胡杰, 战巧蓉, 田德硕, 李文伟. 考虑隐私保护的虚拟电厂经济调度策略[J]. 综合智慧能源, 2025, 47(1): 79-87. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||