[1] |
曾梦隆, 韦钢, 朱兰, 等. 交直流配电网中电动汽车充换储一体站规划[J]. 电力系统自动化, 2021, 45(18): 52-60.
|
|
ZENG Menglong, WEI Gang, ZHU Lan, et al. Planning of electric vehicle charging-swapping-storage integrated station in AC/DC distribution network[J]. Automation of Electric Power Systems, 2021, 45(18): 52-60.
|
[2] |
赵昊天, 王彬, 潘昭光, 等. 支撑云-群-端协同调度的多能园区虚拟电厂: 研发与应用[J]. 电力系统自动化, 2021, 45(5): 111-121.
|
|
ZHAO Haotian, WANG Bin, PAN Zhaoguang, et al. Research and application of park-level multi-energy virtual power plants supporting cloud-cluster-end multi-level synergetic dispatch[J]. Automation of Electric Power Systems, 2021, 45(5): 111-121.
|
[3] |
杨立滨, 曹阳, 魏韡, 等. 计及风电不确定性和弃风率约束的风电场储能容量配置方法[J]. 电力系统自动化, 2020, 44(16): 45-52.
|
|
YANG Libin, CAO Yang, WEI Wei, et al. Configuration method of energy storage for wind farms considering wind power uncertainty and wind curtailment constraint[J]. Automation of Electric Power Systems, 2020, 44(16): 45-52.
|
[4] |
田立亭, 程林, 郭剑波, 等. 虚拟电厂对分布式能源的管理和互动机制研究综述[J]. 电网技术, 2020, 44(6): 2097-2108.
|
|
TIAN Liting, CHENG Lin, GUO Jianbo, et al. A review on the study of management and interaction mechanism for distributed energy in virtual power plants[J]. Power System Technology, 2020, 44(6): 2097-2108.
|
[5] |
李明扬, 董哲. 含分布式新能源和需求响应负荷的虚拟电厂定价机制及优化调度[J]. 综合智慧能源, 2024, 46(10): 12-17.
doi: 10.3969/j.issn.2097-0706.2024.10.002
|
|
LI Mingyang, DONG Zhe. Pricing mechanism and optimal scheduling of virtual power plants containing distributed renewable energy and demand response loads[J]. Integrated Intelligent Energy, 2024, 46(10): 12-17.
doi: 10.3969/j.issn.2097-0706.2024.10.002
|
[6] |
JU L W, LI H H, ZHAO J W, et al. Multi-objective stochastic scheduling optimization model for connecting a virtual power plant to wind-photovoltaic-electric vehicles considering uncertainties and demand response[J]. Energy Conversion and Management, 2016, 128: 160-177.
|
[7] |
周亦洲, 孙国强, 黄文进, 等. 计及电动汽车和需求响应的多类电力市场下虚拟电厂竞标模型[J]. 电网技术, 2017, 41(6): 1759-1767.
|
|
ZHOU Yizhou, SUN Guoqiang, HUANG Wenjin, et al. Strategic bidding model for virtual power plant in different electricity markets considering electric vehicles and demand response[J]. Power System Technology, 2017, 41(6): 1759-1767.
|
[8] |
张凯杰, 丁国锋, 闻铭, 等. 虚拟电厂的优化调度技术与市场机制设计综述[J]. 综合智慧能源, 2022, 44(2): 60-72.
doi: 10.3969/j.issn.2097-0706.2022.02.009
|
|
ZHANG Kaijie, DING Guofeng, WEN Ming, et al. Review of optimal dispatching technology and market mechanism design for virtual power plants[J]. Integrated Intelligent Energy, 2022, 44(2): 60-72.
doi: 10.3969/j.issn.2097-0706.2022.02.009
|
[9] |
FAN S, LIU J, WU Q, et al. Optimal coordination of virtual power plant with photovoltaics and electric vehicles: a temporally coupled distributed online algorithm[J]. Applied Energy, 2020, 277: 115583.
|
[10] |
张卫国, 宋杰, 郭明星, 等. 考虑电动汽车充电需求的虚拟电厂负荷均衡管理策略[J]. 电力系统自动化, 2022, 46(9):118-126.
|
|
ZHANG Weiguo, SONG Jie, GUO Mingxing, et al. Load balancing management strategy for virtual power plants considering charging demand of electric vehicles[J]. Automation of Electric Power Systems, 2022, 46(9): 118-126.
|
[11] |
SHARMA S, ABHYANKAR A R. Loss allocation for weakly meshed distribution system using analytical formulation of shapley value[J]. IEEE Transactions on Power Systems, 2017, 32(2): 1369-1377.
|
[12] |
LI Y, LIU W J, SHAHIDEHPOUR M, et al. Optimal operation strategy for integrated natural gas generating unit and power-to-gas conversion facilities[J]. IEEE Transactions on Sustainable Energy, 2018, 9(4): 1870-1879.
|
[13] |
MEI J, CHEN C, WANG J H, et al. Coalitional game theory based local power exchange algorithm for networked microgrids[J]. Applied Energy, 2019, 239: 133-141.
|
[14] |
WANG H, JIA Y W, SHI M G, et al. A mutually beneficial operation framework for virtual power plants and electric vehicle charging stations[J]. IEEE Transactions on Smart Grid, 2023, 14(6): 4634-4648.
|
[15] |
刘建行, 刘方. 基于深度强化学习的梯级水蓄风光互补系统优化调度策略研究[J]. 广东电力, 2024, 37(5): 10-22.
|
|
LIU Jianhang, LIU Fang. Research on optimized dispatching strategy of cascade hydropower-pumping-storage-wind-photovoltaic multi-energy complementary system based on deep reinforcement learning[J]. Guangdong Electric Power, 2024, 37(5): 10-22.
|
[16] |
ZHANG N, YAN J, HU C G, et al. Price-matching-based regional energy market with hierarchical reinforcement learning algorithm[J]. IEEE Transactions on Industrial Informatics, 2024, 20(9): 11103-11114.
|
[17] |
林彦旭, 高辉. 基于SSA-VMD-BiLSTM模型的充电站负荷预测方法[J]. 广东电力, 2024, 37(6): 53-61.
|
|
LIN Yanxu, GAO Hui. Load prediction method of charging station based on SSA-VMD-BiLSTM model[J]. Guangdong Electric Power, 2024, 37(6): 53-61.
|
[18] |
WANG H, SHI M G, XIE P, et al. Electric vehicle charging scheduling strategy for supporting load flattening under uncertain electric vehicle departures[J]. Journal of Modern Power Systems and Clean Energy, 2023, 11(5):1634-1645.
|
[19] |
WANG H, MEMBER G S, JIA Y, et al. A hybrid incentive program for managing electric vehicle charging flexibility[J]. IEEE Transactions on Smart Grid, 2023, 14(1): 476-488.
|
[20] |
CLEGG S, MANCARELLA P. Integrated electrical and gas network flexibility assessment in low-carbon multi-energy systems[J]. IEEE Transactions on Sustainable Energy, 2015, 7(2): 718-731.
|
[21] |
LI Y S, GAO D W, GAO W, et al. A distributed double-Newton descent algorithm for cooperative energy management of multiple energy bodies in energy Internet[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 5993-6003.
|
[22] |
ALSKAIF J, SEKULOSK M, VAN L G, et al. Blockchain-based fully peer-to-peer energy trading strategies for residential energy systems[J]. IEEE Transactions on Industrial Informatics, 2022, 18(1):231-241.
|
[23] |
李明扬, 窦梦园. 基于强化学习的含电动汽车虚拟电厂优化调度[J]. 综合智慧能源, 2024, 46(6): 27-34.
doi: 10.3969/j.issn.2097-0706.2024.06.004
|
|
LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning[J]. Integrated Intelligent Energy, 2024, 46(6): 27-34.
doi: 10.3969/j.issn.2097-0706.2024.06.004
|
[24] |
LIU N, YU X H, WANG C, et al. Energy-sharing model with price-based demand response for microgrids of peer-to-peer prosumers[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3569-3583.
|
[25] |
JIANG X Y, SUN C, CAO L L, et al. Peer-to-peer energy trading with energy path conflict management in energy local area network[J]. IEEE Transactions on Smart Grid, 2022, 13(3): 2269-2278.
|
[26] |
ZHANG N, SUN Q, YANG L, et al. Event-triggered distributed hybrid control scheme for the integrated energy system[J]. IEEE Transactions on Industrial Informatics, 2021, 18(2): 835-846.
|