[1] |
ZHANG Q, CHEN W M, LING W. Policy optimization of hydrogen energy industry considering government policy preference in China[J]. Sustainable Production and Consumption, 2022, 33: 890-902.
|
[2] |
韩世旺, 赵颖, 张兴宇, 等. 面向碳中和的新型电力系统氢储能调峰技术研究[J]. 综合智慧能源, 2022, 44(9):20-26.
doi: 10.3969/j.issn.2097-0706.2022.09.003
|
|
HAN Shiwang, ZHAO Ying, ZHANG Xingyu, et al. Researches on hydrogen storage peak‑shaving technology for new power systems to achieve carbon neutrality[J]. Integrated Intelligent Energy, 2022, 44(9):20-26.
doi: 10.3969/j.issn.2097-0706.2022.09.003
|
[3] |
HAO W, ZHANG S X, LI X X, et al. A multivariate coupled economic model study on hydrogen production by renewable energy combined with off‑peak electricity[J]. International Journal of Hydrogen Energy, 2022, 47(58):24481-24492.
|
[4] |
葛磊蛟, 崔庆雪, 李明玮, 等. 风光波动性电源电解水制氢技术综述[J]. 综合智慧能源, 2022, 44(5):1-14.
doi: 10.3969/j.issn.2097-0706.2022.05.001
|
|
GE Leijiao, CUI Qingxue, LI Mingwei, et al. Review on water electrolysis for hydrogen production powered by fluctuating wind power and PV[J]. Integrated Intelligent Energy, 2022, 44(5):1-14.
doi: 10.3969/j.issn.2097-0706.2022.05.001
|
[5] |
KAFETZIS A, ZIOGOU C, Panopoulos K D, et al. Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen[J]. Renewable and Sustainable Energy Reviews, 2020, 134:110118.
|
[6] |
MOHAMMED A, GHAITHAN A M, AL-HANBALI A, et al. A multi‑objective optimization model based on mixed integer linear programming for sizing a hybrid PV‑hydrogen storage system[J]. International Journal of Hydrogen Energy, 2023, 48(26):9748-9761.
|
[7] |
FANG R M. Multi‑objective optimized operation of integrated energy system with hydrogen storage[J]. International Journal of Hydrogen Energy, 2019, 44(56):29409-29417.
|
[8] |
CHENG T, ZHU X Q, GU X Y, et al. Stochastic energy management and scheduling of microgrids in correlated environment: A deep learning‑oriented approach[J]. Sustainable Cities and Society, 2021, 69:102856.
|
[9] |
HARROLD D, CAO J, FAN Z. Renewable energy integration and microgrid energy trading using multi‑agent deep rein‑ forcement learning[J]. Applied Energy, 2022, 318:119151.
|
[10] |
刘俊峰, 陈剑龙, 王晓生, 等. 基于深度强化学习的微能源网能量管理与优化策略研究[J]. 电网技术, 2020, 44(10):3794-3803.
|
|
LIU Junfeng, CHEN Jianlong, WANG Xiaosheng, et al. Energy management and optimization of multi‑energy grid based on deep reinforcement learning[J]. Power System Technology, 2020, 44(10):3794-3803.
|
[11] |
张自东, 邱才明, 张东霞, 等. 基于深度强化学习的微电网复合储能协调控制方法[J]. 电网技术, 2019, 43(6):1914-1921.
|
|
ZHANG Zidong, QIU Caiming, ZHANG Dongxia, et al. A coordinated control method for hybrid energy storage system in microgrid based on deep reinforcement learning[J]. Power System Technology, 2019, 43(6):1914-1921.
|
[12] |
余宏晖. 基于深度强化学习的微电网能量优化管理研究[D]. 广州: 华南理工大学, 2021.
|
|
YU Honghui. Research on energy optimization management of microgrid based on deep reinforcement learning[D]. Guangzhou: South China University of Technology, 2021.
|
[13] |
孙惠娟, 段伟男, 陈俐, 等. 基于乐观行动-评判深度强化学习的含氢综合能源系统低碳经济调度[J]. 电网技术, 2024, 48(5):1873-1883.
|
|
SUN Huijuan, DUAN Weinan, CHEN Li, et al. Low‑carbon economic scheduling of hydrogen integrated energy system based on optimistic actor-critic deep reinforcement learning[J]. Power System Technology, 2024, 48(5):1873-1883.
|
[14] |
梁涛, 孙博峰, 谭建鑫, 等. 基于深度强化学习算法的风光互补可再生能源制氢系统调度方案[J]. 高电压技术, 2023, 49(6):2264-2275.
|
|
LIANG Tao, SUN Bofeng, Tan Jianxin, et al. Scheduling scheme of wind-solar complementary renewable energy hydrogen production system based on deep reinforcement learning[J]. High Voltage Engineering, 2023, 49(6):2264-2275.
|
[15] |
彭刘阳, 孙元章, 徐箭, 等. 基于深度强化学习的自适应不确定性经济调度[J]. 电力系统自动化, 2020, 44(9):33-42.
|
|
PENG Liuyang, SUN Yuanzhang, XU Jian, et al. Self‑adaptive uncertainty economic dispatch based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2020, 44(9):33-42.
|
[16] |
王桂兰, 张海晓, 刘宏, 等. 基于近端策略优化算法含碳捕集的综合能源系统低碳经济调度[J]. 计算机应用研究, 2024, 41(5):1508-1514.
|
|
WANG Guilan, ZHANG Haixiao, LIU Hong, et al. Low carbon economic scheduling of integrated energy systems based on proximal policy optimization algorithm with carbon capture[J]. Application Research of Computers, 2024, 41(5):1508-1514.
|
[17] |
江昌旭, 刘晨曦, 林铮, 等. 基于深度强化学习的电力系统暂态稳定控制策略研究综述[J]. 高电压技术, 2023, 49(12):5171-5186.
|
|
JIANG Changxu, LIU Chenxi, LIN Zheng, et al. Review of power system transient stability control strategies based on deep reinforcement learning[J]. High Voltage Engineering, 2023, 49(12):5171-5186.
|