综合智慧能源 ›› 2023, Vol. 45 ›› Issue (7): 48-60.doi: 10.3969/j.issn.2097-0706.2023.07.006
杨波1,2(), 李成雲1,2(
), 吕浩轩3(
), 周博文1,2(
), 李广地1,2(
), 谷鹏1,2(
)
收稿日期:
2023-04-25
修回日期:
2023-06-28
接受日期:
2023-07-11
出版日期:
2023-07-25
作者简介:
杨波(1976),男,高级工程师,从事新能源、物联网、电气控制和电力通信等方面的研究,yangbo@ise.neu.edu.cn;基金资助:
YANG Bo1,2(), LI Chengyun1,2(
), LYU Haoxuan3(
), ZHOU Bowen1,2(
), LI Guangdi1,2(
), GU Peng1,2(
)
Received:
2023-04-25
Revised:
2023-06-28
Accepted:
2023-07-11
Published:
2023-07-25
Supported by:
摘要:
随着高比例可再生能源的不断接入和电力电子化程度的提高,电力系统结构日益复杂,导致电力系统稳定性受威胁。针对基于人工智能的暂态稳定评估(TSA)方法存在的拓扑适应能力差、失稳样本学习困难和模型训练耗时长等缺陷,提出了基于图形卷积和长短时记忆组合网络的空间和时间双注意力机制(STA-GLN)集成电力系统TSA方法。搭建了电力系统仿真模型,在全接线、N-1断线和N-2断线3种拓扑结构下设置不同线路故障,获取原始样本集,基于STA-GLN的TSA方法对系统拓扑变化表现出更强的适应性和评估准确性;构建了基于自适应增强(AdaBoost)算法和迁移学习的集成STA-GLN多任务TSA模型,解决了失稳误判问题并加快了模型的响应速度。最后通过新英格兰10机39节点系统仿真分析验证了该方法的有效性。
中图分类号:
杨波, 李成雲, 吕浩轩, 周博文, 李广地, 谷鹏. 基于多STA-GLN集成模型的电力系统暂态稳定评估方法[J]. 综合智慧能源, 2023, 45(7): 48-60.
YANG Bo, LI Chengyun, LYU Haoxuan, ZHOU Bowen, LI Guangdi, GU Peng. Power system transient stability assessment method based on multiple STA-GLN ensemble models[J]. Integrated Intelligent Energy, 2023, 45(7): 48-60.
表12
单一STA-GLN模型与集成STA-GLN模型性能对比
模型 | 训练集 | 测试集 | 训练周期或子分类器数量 | ||
---|---|---|---|---|---|
Pacc/% | J/% | Pacc/% | J/% | ||
单一STA-GLN多任务TSA模型 | 95.70 | 91.50 | 94.56 | 90.69 | 40个epoch |
96.65 | 93.14 | 95.48 | 92.48 | 50个epoch | |
95.82 | 91.89 | 94.51 | 91.05 | 60个epoch | |
集成STA-GLN多任务TSA模型 | 99.18 | 96.77 | 98.77 | 95.7 | 5个子分类器 |
98.36 | 94.66 | 98.25 | 94.00 | 8个子分类器 | |
97.91 | 93.89 | 96.77 | 93.15 | 10个子分类器 | |
96.54 | 92.68 | 95.72 | 92.07 | 15个子分类器 |
表13
不同模型在样本集A中的性能表现
模型 | 任务1 | 任务2 | |||
---|---|---|---|---|---|
J/% | |||||
AdaBoost-STA-GLN | 98.77 | 98.32 | 97.50 | 97.91 | 95.70 |
AdaBoost-LSTM | 97.54 | 97.28 | 96.24 | 96.76 | 94.55 |
AdaBoost-CNN | 97.31 | 98.30 | 96.77 | 97.53 | 94.35 |
RF | 96.86 | 97.83 | 96.77 | 97.30 | 93.67 |
AdaBoost-DT | 96.55 | 96.28 | 97.08 | 96.68 | 93.38 |
AdaBoost-GCN | 95.82 | 96.17 | 94.62 | 95.39 | 92.77 |
表14
不同模型在样本集B中的性能表现
模型 | 任务1 | 任务2 | |||
---|---|---|---|---|---|
J/% | |||||
AdaBoost-STA-GLN | 97.51 | 97.11 | 97.92 | 97.51 | 94.56 |
AdaBoost-LSTM | 96.65 | 96.64 | 96.00 | 96.32 | 93.27 |
AdaBoost-CNN | 96.58 | 96.62 | 95.33 | 95.97 | 93.10 |
RF | 95.21 | 96.03 | 96.67 | 96.35 | 92.57 |
AdaBoost-DT | 94.56 | 95.39 | 96.67 | 94.77 | 91.35 |
AdaBoost-GCN | 92.47 | 94.70 | 96.62 | 95.65 | 89.68 |
表15
不同模型在样本集C中的性能表现
模型 | 任务1 | 任务2 | |||
---|---|---|---|---|---|
J/% | |||||
AdaBoost-STA-GLN | 95.52 | 97.28 | 96.62 | 96.95 | 92.56 |
AdaBoost-LSTM | 92.47 | 96.17 | 94.62 | 95.39 | 91.40 |
AdaBoost-CNN | 91.78 | 95.39 | 96.67 | 96.03 | 91.25 |
RF | 91.10 | 95.57 | 96.62 | 96.30 | 90.77 |
AdaBoost-DT | 89.24 | 95.33 | 96.62 | 95.97 | 88.78 |
AdaBoost-GCN | 86.55 | 94.67 | 95.95 | 95.30 | 86.55 |
表16
不同模型在样本集E中的性能表现
模型 | 任务1 | 任务2 | |||
---|---|---|---|---|---|
J/% | |||||
AdaBoost-STA-GLN | 98.36 | 98.76 | 99.58 | 99.17 | 95.50 |
AdaBoost-LSTM | 97.31 | 98.38 | 97.85 | 98.11 | 94.25 |
AdaBoost-CNN | 96.86 | 98.32 | 97.50 | 97.91 | 94.18 |
RF | 96.41 | 97.85 | 97.85 | 97.85 | 93.37 |
AdaBoost-DT | 95.40 | 97.83 | 96.77 | 97.30 | 92.86 |
AdaBoost-GCN | 93.72 | 96.28 | 97.08 | 96.68 | 91.54 |
[1] | 薛巍, 舒继武, 严剑峰, 等. 基于集群机的大规模电力系统暂态过程并行仿真[J]. 中国电机工程学报, 2003, 23(8):38-43. |
XUE Wei, SHU Jiwu, YAN Jianfeng, et al. Cluster-based parallel simulation for power system transient stability analysis[J]. Proceedings of the CSEE, 2003, 23(8):38-43. | |
[2] | 李亚楼, 李芳, 刘赫川, 等. 基于PSASP的综合能源仿真分析系统[J]. 电网技术, 2019, 43(7):2498-2505. |
LI Yalou, LI Fang, LIU Hechuan, et al. Framework design of simulation system for integrated energy systems based on PSASP[J]. Power System Technology, 2019, 43(7):2498-2505. | |
[3] | CHANG H D, WU F F, VARIAYA P P. A BCU method for direct analysis of power system transient stability[J]. IEEE Transactions on Power Systems, 1994, 19(2):11-17. |
[4] | 汪小明, 刘涤尘, 吴军, 等. 基于能量函数法的电网暂态稳定性分析[J]. 电网技术, 2011, 35(8):13-17. |
WANG Xiaoming, LIU Dichen, WU Jun, et al. Energy function-based power system transient stability analysis[J]. Power System Technology, 2011, 35(8):13-17. | |
[5] | 张若愚, 吴俊勇, 李宝琴, 等. 基于迁移学习的电力系统暂态稳定自适应预测[J]. 电网技术, 2020, 44(6):2196-2203. |
ZAHNG Ruoyu, WU Junyong, LI Baoqin, et al. Self-adaptive power system transient stability prediction based on transfer learning[J]. Power System Technology, 2020, 44(6):2196-2203. | |
[6] | 钟智, 管霖, 苏寅生, 等. 基于图注意力深度网络的电力系统暂态稳定评估[J]. 电网技术, 2020, 45(6):2122-2130. |
ZHONG Zhi, GUAN Lin, SU Yinsheng, et al. Power system transient stability assessment based on graph attention deep network[J]. Power System Technology, 2020, 45(6):2122-2130. | |
[7] |
HUANG Jiyu, GUAN Lin, SU Yinsheng, et al. Recurrent graph convolutional network-based multi-task transient stability assessment framework in power system[J]. IEEE Access, 2020, 8: 93283-93296.
doi: 10.1109/Access.6287639 |
[8] |
HE H B, GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9):1263-1284.
doi: 10.1109/TKDE.2008.239 |
[9] | 谭本东, 杨军, 赖秋频, 等. 基于改进CGAN的电力系统暂态稳定评估样本增强方法[J]. 电力系统自动化, 2019, 43(1):149-157. |
TAN Bendong, YANG Jun, LAI Qiupin, et al. Data augment method for power system transient stability assessment based on improved conditional generative adversarial network[J]. Automation of Electric Power Systems, 2019, 43(1):149-157. | |
[10] | 田芳, 周孝信, 史东宇, 等. 基于卷积神经网络综合模型和稳态特征量的电力系统暂态稳定评估[J]. 中国电机工程学报, 2019, 39(14):4025-4031. |
TIAN Fang, ZHOU Xiaoxin, SHI Dongyu, et al. Power system transient stability assessment based on comprehensive convolutional neural network model and steady-state features[J]. Proceedings of the CSEE, 2019, 39(14):4025-4031. | |
[11] | 李宝琴, 吴俊勇, 邵美阳, 等. 基于集成深度置信网络的精细化电力系统暂态稳定评估[J]. 电力系统自动化, 2020, 44(6):17-26. |
LI Baoqin, WU Junyong, SHAO Meiyang, et al. Refined transient stability evaluation for power system based on ensemble deep belief network[J]. Automation of Electric Power Systems, 2020, 44(6):17-26. | |
[12] | 邵美阳, 吴俊勇, 李宝琴, 等. 基于两阶段集成深度置信网络的电力系统暂态稳定评估[J]. 电网技术, 2020, 44(5):1776-1787. |
SHAO Meiyang, WU Junyong, LI Baoqin, et al. Transient stability assessment of power system based on two-stage ensemble deep belief network[J]. Power System Technology, 2020, 44(5):1776-1787. | |
[13] |
ZHOU Y Z, GUO Q L, SUN H B, et al. A novel data-driven approach for transient stability prediction of power systems considering the operational variability[J]. International Journal of Electrical Power and Energy Systems, 2019, 107:379-394.
doi: 10.1016/j.ijepes.2018.11.031 |
[14] | 李楠, 李保罗, 朱建华, 等. 计及样本不平衡与重叠的暂态稳定评估方法[J]. 电力系统自动化, 2020, 44(21):64-71. |
LI Nan, LI Baoluo, ZHU Jianhua, et al. Transient stability assessment method considering sample imbalance and overlap[J]. Automation of Electric Power Systems, 2020, 44(21):64-71. | |
[15] | 陈振, 肖先勇, 李长松, 等. 基于代价敏感极端学习机的电力系统暂态稳定评估方法[J]. 电力自动化设备, 2016, 36(2):118-123. |
CHEN Zhen, XIAO Xianyong, LI Changsong, et al. Power system transient stability assessment based on cost-sensitive extreme learning machine[J]. Electric Power Automation Equipment, 2016, 36(2):118-123. | |
[16] |
WANG H Y, CHEN Q F, Zhang B H. Transient stability assessment combined model framework based on cost-sensitive method[J]. IET Generation, Transmission & Distribution, 2020, 14(12): 2256-2262.
doi: 10.1049/gtd2.v14.12 |
[17] | 王怀远, 陈启凡. 基于代价敏感堆叠变分自动编码器的暂态稳定评估方法[J]. 中国电机工程学报, 2020, 40(7):2213-2220. |
WANG Haiyuan, CHEN Qifan. A transient stability assessment method based on cost-sensitive stacked variational auto-encoder[J]. Proceedings of the CSEE, 2020, 40(7):2213-2220. | |
[18] |
WANG H Y, WANG Q Y, CHEN Q F, el at. Transient stability assessment model with improved cost-sensitive method based on the fault severity[J]. IET Generation, Transmission & Distribution, 2020, 14(20): 4605-4611.
doi: 10.1049/gtd2.v14.20 |
[19] |
LI N, LI B L, HAN Y Q, et al. Dual cost-sensitivity factors-based power system transient stability assessment[J]. IET Generation, Transmission & Distribution, 2020, 14(24): 5858-5869.
doi: 10.1049/gtd2.v14.24 |
[20] |
ZHANG R, XU Y, DONG Z Y, et al. Post-disturbance transient stability assessment of power systems by a self-adaptive intelligent system[J]. IET Generation, Transmission & Distribution, 2015, 9(3):296-305.
doi: 10.1049/gtd2.v9.3 |
[21] |
TAN B D, YANG J, ZHOU T, et al. Spatial-temporal adaptive transient stability assessment for power system under missing data[J]. International Journal of Electrical Power and Energy Systems, 2020, 123, 106237.
doi: 10.1016/j.ijepes.2020.106237 |
[22] | SAUER P W, PAI M A. Power system dynamics and stability[M]. USA: Prentice Hall, 1998. |
[23] | 王莉丽, 刘崇茹. DIgSILENT在电力系统稳定计算中的应用[J]. 中国科技论文, 2016(11):1283-1287. |
WANG Lili, LIU Chongru. Application of DIgSILENT in power system stability calculation[J]. China Science Paper, 2016(11):1283-1287. | |
[24] | LAI G K, CHANG W C, YANG Y M, el at. Modeling long- and short-term temporal patterns with deep neural networks[C]// The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. SIGIR, 2018:95-104. |
[25] |
刘文慧, 严博文, 吴江, 等. 基于平行控制理论的循环流化床锅炉床温智能预测模型[J]. 综合智慧能源, 2022, 44(3): 50-57.
doi: 10.3969/j.issn.2097-0706.2022.03.008 |
LIU Wenhui, YAN Bowen, WU Jiang, et al. Intelligent prediction model of CFB boiler bed temperature based on parallel control theory[J]. Integrated Intelligent Energy, 2022, 44(3): 50-57.
doi: 10.3969/j.issn.2097-0706.2022.03.008 |
|
[26] | 周挺, 杨军, 詹祥澎, 等. 一种数据驱动的暂态电压稳定评估方法及其可解释性研究[J]. 电网技术, 2021, 45(11):4416-4425. |
ZHOU Ting, YANG Jun, ZHAN Xiangpeng, et al. Data-driven method and interpretability analysis for transient voltage stability assessment[J]. Power System Technology, 2021, 45(11):4416-4425. | |
[27] |
梁修锐, 刘道伟, 杨红英, 等. 数据驱动的电力系统静态电压稳定态势评估[J]. 电力建设, 2020, 41(1):126-132.
doi: 10.3969/j.issn.1000-7229.2020.01.015 |
LIANG Xiurui, LIU Daowei, YANG Hongying, et al. Data-driven situation assessment of power system static voltage stability[J]. Electric Power Construction, 2020, 41(1):126-132.
doi: 10.3969/j.issn.1000-7229.2020.01.015 |
|
[28] |
孙黎霞, 彭嘉杰, 田屹昀, 等. 基于混合门控循环单元子层的多任务暂态稳定评估[J]. 电力建设, 2022, 43(2): 63-69.
doi: 10.12204/j.issn.1000-7229.2022.02.008 |
SUN Lixia, PENG Jiajie, TIAN Yiyun, et al. Multi-task transient stability assessment based on sub-layer of hybrid gated recurrent unit[J]. Electric Power Construction, 2022, 43(2):63-69.
doi: 10.12204/j.issn.1000-7229.2022.02.008 |
|
[29] |
郑真, 朱峰, 马小丽, 等. 基于TL-LSTM的新能源功率短期预测[J]. 综合智慧能源, 2023, 45(1): 41-48.
doi: 10.3969/j.issn.2097-0706.2023.01.005 |
ZHENG Zhen, ZHU Feng, MA Xiaoli, et al. Short-term new energy power prediction based on TL-LSTM[J]. Integrated Intelligent Energy, 2023, 45(1): 41-48.
doi: 10.3969/j.issn.2097-0706.2023.01.005 |
|
[30] |
PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359.
doi: 10.1109/TKDE.2009.191 |
[1] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[2] | 王泽宁, 李文中, 李东辉, 徐泰山, 俞俊. 基于软件定义的新型电力系统分层自治电力平衡模式研究[J]. 综合智慧能源, 2024, 46(7): 1-11. |
[3] | 殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7): 12-20. |
[4] | 何方波, 裴力耕, 郑睿, 范康健, 张晓曼, 李更丰. “源网荷储”协同助力陕西省新型电力系统建设[J]. 综合智慧能源, 2024, 46(7): 40-46. |
[5] | 郑庆明, 井延伟, 梁涛, 柴露露, 吕梁年. 基于DDPG算法的离网型可再生能源大规模制氢系统优化调度[J]. 综合智慧能源, 2024, 46(6): 35-43. |
[6] | 郁海彬, 卢闻州, 唐亮, 张煜晨, 邹翔宇, 姜玉靓, 刘嘉宝. 考虑风险偏好的多主体虚拟电厂经济调度与收益分配策略[J]. 综合智慧能源, 2024, 46(6): 66-77. |
[7] | 王亮, 邓松. 面向新型电力系统的异常数据检测方法[J]. 综合智慧能源, 2024, 46(5): 12-19. |
[8] | 董强, 徐君, 方东平, 方丽娟, 陈妍琼. 基于光伏出力特性的分布式光储系统优化调度策略[J]. 综合智慧能源, 2024, 46(4): 17-23. |
[9] | 缪月森, 夏红军, 黄宁洁, 李云, 周世杰. 基于Informer的负荷及光伏出力系数预测[J]. 综合智慧能源, 2024, 46(4): 60-67. |
[10] | 王永利, 王亚楠, 马子奔, 秦雨萌, 陈锡昌, 滕越. 面向区块链技术应用的能源交易系统效果评价[J]. 综合智慧能源, 2024, 46(4): 78-84. |
[11] | 丁乐言, 柯松, 杨军, 施兴烨. 基于自适应控制参数整定的虚拟同步发电机控制策略[J]. 综合智慧能源, 2024, 46(3): 35-44. |
[12] | 苑曙光, 张瑜婷, 王峰, 苑广震. 蒙西地区规模化储能商业运行模式及风险分析[J]. 综合智慧能源, 2024, 46(3): 63-71. |
[13] | 李成雲, 杨东升, 周博文, 杨波, 李广地. 基于数字孪生技术的新型电力系统数字化[J]. 综合智慧能源, 2024, 46(2): 1-11. |
[14] | 张心怡, 杨波. 考虑构网型和跟网型变流器的孤岛微电网小信号稳定性分析[J]. 综合智慧能源, 2024, 46(2): 12-18. |
[15] | 陆文甜. 基于增量交换的主动配电网分布式多目标最优潮流[J]. 综合智慧能源, 2024, 46(2): 43-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||