综合智慧能源 ›› 2024, Vol. 46 ›› Issue (6): 27-34.doi: 10.3969/j.issn.2097-0706.2024.06.004
收稿日期:
2024-03-01
修回日期:
2024-04-19
出版日期:
2024-06-25
作者简介:
李明扬(1983),男,讲师,博士,从事电力系统安全运行与优化调度、配电网规划与优化运行等方面的研究,limy@ncepu.edu.cn;基金资助:
Received:
2024-03-01
Revised:
2024-04-19
Published:
2024-06-25
Supported by:
摘要:
大量电动汽车(EV)用户的无序充电可能造成电网负荷剧烈波动,危及电网的安全稳定。随着EV入网(V2G)技术的应用,将EV充电站及其周边的分布式新能源发电聚合为虚拟电厂(VPP)后进行优化调度,有助于改善EV用户充放电的经济性及满意度,同时提高分布式新能源的利用率,平抑电网负荷波动,但EV充电站的整体充放电负荷是大量个体EV用户随机行为的聚合,难以用数学模型精确描述。针对包含EV的VPP,提出一种基于深度强化学习的交互式调度框架,以最大化VPP内EV用户的总效益。VPP控制中心作为智能体决策EV个体的充放电动作,无需掌握个体详细模型,而是通过与区域电网环境的交互,不断学习和更新动作策略,从而克服集中式优化方法的局限性。该优化调度框架采用深度确定性策略梯度(DDPG)算法进行求解。仿真结果表明,与集中式优化方法相比,该优化算法提高了各EV用户的效益,并使EV充放电负荷与分布式新能源发电协调配合实现削峰填谷,改善了VPP的整体运行性能。
中图分类号:
李明扬, 窦梦园. 基于强化学习的含电动汽车虚拟电厂优化调度[J]. 综合智慧能源, 2024, 46(6): 27-34.
LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning[J]. Integrated Intelligent Energy, 2024, 46(6): 27-34.
表1
5个仿真场景下EV分时段进站序列及优化结果
时间 | 场景1 | 场景2 | 场景3 | 场景4 | 场景5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
进站EV/辆 | VPP效益/元 | 进站EV/辆 | VPP效益/元 | 进站EV/辆 | VPP效益/元 | 进站EV/辆 | VPP效益/元 | 进站EV/辆 | VPP效益/元 | |
00:00—01:00 | 6 | 39.22 | 6 | 41.22 | 5 | 39.18 | 7 | 46.96 | 5 | 34.36 |
01:00—02:00 | 12 | 68.70 | 12 | 76.71 | 14 | 75.96 | 6 | 46.99 | 10 | 99.57 |
02:00—03:00 | 15 | 69.45 | 9 | 83.43 | 12 | 71.87 | 11 | 65.95 | 8 | 70.33 |
03:00—04:00 | 11 | 61.30 | 11 | 74.98 | 10 | 97.34 | 10 | 81.52 | 11 | 106.01 |
04:00—05:00 | 10 | 66.40 | 6 | 68.75 | 8 | 53.10 | 8 | 60.63 | 6 | 59.47 |
05:00—06:00 | 8 | 43.33 | 8 | 60.24 | 7 | 49.83 | 9 | 60.46 | 8 | 43.84 |
06:00—07:00 | 6 | 32.63 | 7 | 44.32 | 5 | 43.59 | 7 | 64.63 | 4 | 30.51 |
07:00—08:00 | 6 | 15.17 | 5 | 45.86 | 7 | 36.87 | 6 | 41.03 | 6 | 46.26 |
08:00—09:00 | 5 | 10.18 | 7 | 31.83 | 8 | 25.92 | 6 | 57.86 | 5 | 19.18 |
09:00—10:00 | 6 | 29.36 | 8 | 29.74 | 7 | 73.73 | 5 | 35.19 | 8 | 43.96 |
10:00—11:00 | 11 | 45.68 | 5 | 22.29 | 8 | 58.65 | 12 | 27.76 | 4 | 32.21 |
11:00—12:00 | 7 | 58.75 | 8 | 40.64 | 14 | 61.13 | 10 | 23.88 | 10 | 92.72 |
12:00—13:00 | 7 | 66.39 | 9 | 43.69 | 12 | 82.09 | 7 | 63.27 | 11 | 101.17 |
13:00—14:00 | 9 | 64.68 | 10 | 85.89 | 10 | 93.44 | 9 | 86.77 | 9 | 72.97 |
14:00—15:00 | 7 | 45.91 | 8 | 58.67 | 9 | 40.82 | 7 | 77.28 | 10 | -1.47 |
15:00—16:00 | 11 | 68.99 | 6 | 57.77 | 7 | 31.93 | 5 | 39.14 | 11 | 23.84 |
16:00—17:00 | 6 | 44.62 | 10 | 42.60 | 5 | -19.07 | 6 | 54.90 | 11 | 49.37 |
17:00—18:00 | 6 | 47.30 | 8 | 45.34 | 5 | 49.55 | 8 | 78.28 | 8 | 53.72 |
18:00—19:00 | 9 | 43.74 | 5 | 23.41 | 0 | 36.68 | 11 | 56.35 | 11 | 58.56 |
19:00—20:00 | 6 | 36.44 | 9 | 28.03 | 8 | 22.42 | 7 | 43.52 | 9 | 25.69 |
20:00—21:00 | 4 | 22.08 | 8 | 34.59 | 6 | 20.68 | 8 | 4.17 | 5 | 18.60 |
21:00—22:00 | 5 | 26.13 | 8 | 40.46 | 6 | 27.15 | 5 | 23.25 | 3 | 23.31 |
22:00—23:00 | 3 | 24.90 | 4 | 20.40 | 4 | 10.61 | 4 | 9.08 | 2 | 14.55 |
23:00—24:00 | 4 | 33.20 | 3 | 19.16 | 3 | 14.16 | 6 | 49.33 | 5 | 34.40 |
[1] | 朱磊, 黄河, 高松, 等. 计及风电消纳的电动汽车负荷优化配置研究[J]. 中国电机工程学报, 2021, 41(S1): 194-203. |
ZHU Lei, HUANG He, GAO Song, et al. Research on optimal load allocation of electric vehicle considering wind power consumption[J]. Proceedings of the CSEE, 2021, 41(S1): 194-203. | |
[2] | 肖朝霞, 张可信, 冯冀. 含电动汽车充电站的风/光/柴独立微电网分层优化调度[J]. 天津工业大学学报, 2022, 41(4): 61-74. |
XIAO Zhaoxia, ZHANG Kexin, FENG Ji. Hierarchical optimal dispatching of wind/PV/diesel islanded microgrid with EVs charging station[J]. Journal of Tiangong University, 2022, 41(4): 61-74. | |
[3] | 吴巨爱, 薛禹胜, 谢东亮. 电动汽车聚合商对备用服务能力的优化[J]. 电力系统自动化, 2019, 43(9): 75-81. |
WU Juai, XUE Yusheng, XIE Dongliang. Optimization of reserve service capability made by electric vehicle aggregator[J]. Automation of Electric Power Systems, 2019, 43(9): 75-81. | |
[4] | 刘伟佳, 吴秋伟, 文福拴, 等. 电动汽车和可控负荷参与配电系统阻塞管理的市场机制[J]. 电力系统自动化, 2014, 38(24): 26-33,101. |
LIU Weijia, WU Qiuwei, WEN Fushuan, et al. A market mechanism for participation of electric vehicles and dispatchable loads in distribution system congestion management[J]. Automation of Electric Power Systems, 2014, 38(24): 26-33,101. | |
[5] | 李红章. 基于改进粒子群算法的电动汽车充电调度优化研究[D]. 西安: 长安大学, 2021. |
LI Hongzhang. Research on optimization of electric vehicle charging scheduling based on improved particle swarm optimization algorithm[D]. Xi'an: Chang'an University, 2021. | |
[6] | 葛晓琳, 郝广东, 夏澍, 等. 考虑规模化电动汽车与风电接入的随机解耦协同调度[J]. 电力系统自动化, 2020, 44(4): 54-62. |
GE Xiaolin, HAO Guangdong, XIA Shu, et al. Stochastic decoupling collaborative dispatch considering integration of large-scale electric vehicles and wind power[J]. Automation of Electric Power Systems, 2020, 44(4): 54-62. | |
[7] | 黄兆元, 马海, 林俊安, 等. 含电动汽车和P2G的虚拟电厂调度优化策略[J]. 科学技术创新, 2022(6):168-171. |
HUANG Zhaoyuan, MA Hai, LIN Jun'an, et al. Scheduling optimization strategy of virtual power plant with electric vehicle and P2G[J]. Scientific and Technological Innovation, 2022(6): 168-171. | |
[8] | CAO Y, WANG T, KAIWARTYA O, et al. An EV charging management system concerning drivers' trip duration and mobility uncertainty[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2018, 48(4): 596-607. |
[9] | 袁桂丽, 王宝源. 含电动汽车的虚拟电厂经济性优化调度[J]. 太阳能学报, 2019, 40(8): 2395-2404. |
YUAN Guili, WANG Baoyuan. Economic optimal dispatch of virtual power plant with electric vehicles[J]. Acta Energiae Sloaris Sinica, 2019, 40(8): 2395-2404. | |
[10] | 马永翔, 马少洁, 闫群民, 等. 虚拟电厂与电动汽车用户的主从博弈定价策略[J/OL]. 华北电力大学学报(自然科学版): 1-10[2024-04-18]. http://kns.cnki.net/kcms/detail/13.1212.tm.20230822.1034.006.html. |
MA Yongxiang, MA Shaojie, YAN Qunmin, et al. Master-slave game pricing strategy between virtual power plants and electric vehicle users[J/OL]. Journal of North China Electric Power University (Natural Science Edition): 1-10[2024-04-18]. http://kns.cnki.net/kcms/detail/13.1212.tm.20230822.1034.006.html. | |
[11] | 王晛, 张华君, 张少华. 风电和电动汽车组成虚拟电厂参与电力市场的博弈模型[J]. 电力系统自动化, 2019, 43(3): 155-162. |
WANG Xian, ZHANG Huajun, ZHANG Shaohua. Game model of electricity market involving virtual power plant composed of wind power and electric vehicles[J]. Electric power system automation, 2019, 43(3): 155-162. | |
[12] | 袁桂丽, 苏伟芳. 计及电动汽车不确定性的虚拟电厂参与AGC调频服务研究[J]. 电网技术, 2020, 44(7): 2538-2548. |
YUAN Guili, SU Weifang. Virtual power plants providing AGC FM service considering uncertainty of electric vehicles[J]. Power System Technology, 2020, 44(7): 2538-2548. | |
[13] |
田泽禹, 沙钊旸, 赵全斌, 等. 针对温控负载变化的虚拟电厂控制策略研究[J]. 综合智慧能源, 2024, 46(1): 28-37.
doi: 10.3969/j.issn.2097-0706.2024.01.004 |
TIAN Zeyu, SHA Zhaoyang, ZHAO Quanbin, et al. Research on control strategy for virtual power plants in response to thermostatically controlled loads[J]. Integrated Intelligent Energy, 2024, 46(1): 28-37.
doi: 10.3969/j.issn.2097-0706.2024.01.004 |
|
[14] | 李茹杨, 彭慧民, 李仁刚, 等. 强化学习算法与应用综述[J]. 计算机系统应用, 2020, 29(12): 13-25. |
LI Ruyang, PENG Huimin, LI Rengang, et al. Overview on algorithms and applications for reinforcement learning[J]. Computer Systems & Applications, 2020, 29(12):13-25. | |
[15] | 许树港. 考虑多种类型分布式能源的虚拟电厂优化调度研究[D]. 北京: 华北电力大学, 2022. |
XU Shugang. Research on optimal scheduling of virtual power plants considering multiple types of distributed energy[D]. Beijing: North China Electric Power University, 2022. | |
[16] | 陶力, 杨夏喜, 顾金辉, 等. 基于SAC和TD3的含电动汽车虚拟电厂调度策略[J]. 电气传动, 2023, 53(9):25-34. |
TAO Li, YANG Xiaxi, GU Jinhui, et al. Scheduling strategy of virtual power plant with electric vehicle based on SAC and TD3[J]. Electric Drive, 2023, 53(9): 25-34. | |
[17] | 卿竹雨, 安锐, 高红均, 等. 考虑分散式资源互动响应的虚拟电厂智能化调峰定价[J]. 电力自动化设备, 2023, 43(5): 96-103. |
QING Zhuyu, AN Rui, GAO Hongjun, et al. Intelligent peak regulation pricing for virtual power plant considering interactive response of distributed resources[J]. Electric Power Automation Equipment, 2023, 43(5): 96-103. | |
[18] | 杨挺, 赵黎媛, 刘亚闯, 等. 基于深度强化学习的综合能源系统动态经济调度[J]. 电力系统自动化, 2021, 45(5): 39-47. |
YANG Ting, ZHAO Liyuan, LIU Yachuang, et al. Dynamic economic dispatch for integrated energy system based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2021, 45(5): 39-47. | |
[19] | 张子霖. 基于深度强化学习的电动汽车协调充电算法[J]. 信息技术与网络安全, 2022, 41(4): 83-89. |
ZHANG Zilin. A deep RL-based algorithm for coordinated charging of electric vehicles[J]. Information Technology and Cyber Security, 2022, 41(4): 83-89. | |
[20] | LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[C]// Proceedings of 2016 International Conference on Learning Representations. ICLR, 2016: 1-14. |
[21] |
胡泽, 朱子晴, 卜思齐, 等. 基于深度强化学习的区域综合能源定价策略研究[J]. 综合智慧能源, 2023, 45(7): 87-96.
doi: 10.3969/j.issn.2097-0706.2023.07.010 |
HU Ze, ZHU Ziqing, BU Siqi, et al. Pricing strategy in district-level integrated energy market based on deep reinforcement learning[J]. Integrated Intelligent Energy, 2023, 45(7): 87-96.
doi: 10.3969/j.issn.2097-0706.2023.07.010 |
|
[22] | 杨维, 李歧强. 粒子群优化算法综述[J]. 中国工程科学, 2004(5): 87-94. |
YANG Wei, LI Qiqiang. Survey on particle swarm optimization algorithm[J]. Engineering Science, 2004(5): 87-94. | |
[23] |
王鑫, 陈祖翠, 卞在平, 等. 基于粒子群优化算法的智慧微电网风光储容量优化配置[J]. 综合智慧能源, 2022, 44(6): 52-58.
doi: 10.3969/j.issn.2097-0706.2022.06.006 |
WANG Xin, CHEN Zucui, BIAN Zaiping, et al. Optimal allocation of a wind-PV-battery hybrid system in smart microgrid based on particle swarm optimization algorithm[J]. Integrated Intelligent Energy, 2022, 44(6): 52-58.
doi: 10.3969/j.issn.2097-0706.2022.06.006 |
|
[24] |
胡祖源, 靳现林, 谭雅之, 等. 基于改进粒子群算法的分布式光伏及储能系统优化配置[J]. 综合智慧能源, 2023, 45(1): 49-57.
doi: 10.3969/j.issn.2097-0706.2023.01.006 |
HU Zuyuan, JIN Xianlin, TAN Yazhi, et al. Optimized configuration of distributed photovoltaic and energy storage system based on improved particle swarm algorithm[J]. Integrated Intelligent Energy, 2023, 45(1): 49-57.
doi: 10.3969/j.issn.2097-0706.2023.01.006 |
|
[25] | 陈文颖, 刘蓓迪. 基于粒子群算法的电动汽车有序充放电优化[J]. 山东电力技术, 2023, 50(1):52-58. |
CHEN Wenying, LIU Beidi. Sequential charging and discharging optimization of electric vehicles based on particle swarm optimization[J]. Shandong Electric Power, 2023, 50(1):52-58. |
[1] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[2] | 郑庆明, 井延伟, 梁涛, 柴露露, 吕梁年. 基于DDPG算法的离网型可再生能源大规模制氢系统优化调度[J]. 综合智慧能源, 2024, 46(6): 35-43. |
[3] | 郁海彬, 卢闻州, 唐亮, 张煜晨, 邹翔宇, 姜玉靓, 刘嘉宝. 考虑风险偏好的多主体虚拟电厂经济调度与收益分配策略[J]. 综合智慧能源, 2024, 46(6): 66-77. |
[4] | 李云, 周世杰, 胡哲千, 梁均原, 肖雷鸣. 基于NSGA-Ⅱ-WPA的综合能源系统多目标优化调度[J]. 综合智慧能源, 2024, 46(4): 1-9. |
[5] | 苑曙光, 张瑜婷, 王峰, 苑广震. 蒙西地区规模化储能商业运行模式及风险分析[J]. 综合智慧能源, 2024, 46(3): 63-71. |
[6] | 孙雨乐, 漆淘懿, 赵宇明, 叶承晋, 惠红勋. 路网耦合下计及电动汽车V2G潜力的充电站选址定容研究[J]. 综合智慧能源, 2024, 46(1): 1-10. |
[7] | 田泽禹, 沙钊旸, 赵全斌, 严卉, 种道彤. 针对温控负载变化的虚拟电厂控制策略研究[J]. 综合智慧能源, 2024, 46(1): 28-37. |
[8] | 梁艳, 郭立, 张丹, 刘智琦, 胡郁彬, 周霞, 魏聪, 单宇. 考虑主客观响应能力的电动汽车聚合潜力评估[J]. 综合智慧能源, 2023, 45(9): 1-10. |
[9] | 胡超, 彭文河, 方支剑. 基于光储充电站的电动汽车分层优化调度[J]. 综合智慧能源, 2023, 45(9): 11-17. |
[10] | 崔金栋, 汪羽晴. 云储能模式下用户侧储能协调优化调度机制研究[J]. 综合智慧能源, 2023, 45(9): 18-25. |
[11] | 包义辛, 徐椤赟, 杨强. 基于MADDPG算法的建筑群柔性负荷优化调控方法[J]. 综合智慧能源, 2023, 45(7): 61-69. |
[12] | 胡泽, 朱子晴, 卜思齐, 陈家荣, 魏翔. 基于深度强化学习的区域综合能源定价策略研究[J]. 综合智慧能源, 2023, 45(7): 87-96. |
[13] | 葛磊蛟, 于惟坤, 朱若源, 王关涛, 白星振. 考虑改进阶梯式碳交易机制与需求响应的综合能源系统优化调度[J]. 综合智慧能源, 2023, 45(7): 97-106. |
[14] | 刘健, 刘雨鑫, 庄涵羽. 虚拟电厂关键技术及其建设实践[J]. 综合智慧能源, 2023, 45(6): 59-65. |
[15] | 熊真真. 基于决策树的上海商业建筑虚拟电厂执行力分析[J]. 综合智慧能源, 2023, 45(6): 66-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||