综合智慧能源 ›› 2023, Vol. 45 ›› Issue (7): 87-96.doi: 10.3969/j.issn.2097-0706.2023.07.010

• 电力交易与管理 • 上一篇    下一篇

基于深度强化学习的区域综合能源定价策略研究

胡泽a(), 朱子晴a(), 卜思齐a,b,c,d,*(), 陈家荣a,b(), 魏翔a()   

  1. a.电机工程学系,香港理工大学,香港 999077
    b.电网现代化研究中心,香港理工大学,香港 999077
    c.智慧能源研究院,香港理工大学,香港 999077
    d.科技及创新政策研究中心,香港理工大学,香港 999077
  • 收稿日期:2023-05-09 修回日期:2023-06-13 接受日期:2023-07-25 出版日期:2023-07-25
  • 通讯作者: *卜思齐(1984),男,副教授,博士生导师,博士,从事新型电力系统安全稳定性分析与运行规划等方面研究工作,siqi.bu@polyu.edu.hk
  • 作者简介:胡泽(1999),男,在读博士研究生,从事机器学习、优化方法与博弈论在能源市场中应用等方面的研究,zzzed.hu@connect.polyu.hk
    朱子晴(1996),男,博士后研究员,博士,从事人工智能、博弈论、优化理论在电力系统运行中的应用,ziqing-yancy.zhu@polyu.edu.hk
    陈家荣(1966),男,副教授,博士生导师,博士,从事电力系统稳定性、电力系统运行与规划、电力市场等方面的研究,kevin.kw.chan@polyu.edu.hk
    魏翔(1996),男,在读博士研究生,硕士,从事电力系统弹性运行以及综合能源系统优化运行和调度研究,weixiang0610@outlook.com
  • 基金资助:
    国家自然科学基金(52077188)

Pricing strategy in district-level integrated energy market based on deep reinforcement learning

HU Zea(), ZHU Ziqinga(), BU Siqia,b,c,d,*(), CHAN Jiaronga,b(), WEI Xianga()   

  1. a. Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077,China
    b. Research Centre for Grid Modernisation, The Hong Kong Polytechnic University, Hong Kong 999077,China
    c. Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong 999077,China
    d. Policy Research Centre for Innovation and Technology, The Hong Kong Polytechnic University, Hong Kong 999077,China
  • Received:2023-05-09 Revised:2023-06-13 Accepted:2023-07-25 Published:2023-07-25
  • Supported by:
    National Natural Science Foundation(52077188)

摘要:

为整合多类能源交易并促进能源的有效利用,综合能源市场(IEM)正在逐步建立并取代传统能源市场。作为连接能源供给侧与需求侧的重要组成部分,区域综合能源市场(DIEM)中的能源交易与定价对综合能源系统运行有着直接影响与重要意义。提出了DIEM交易框架,并建立了综合能源服务商(IESP)与综合能源用户(IEC)的双层定价决策-需求响应问题。在双层决策问题中考虑了能源需求弹性,新能源出力不确定性与隐私保护,最终采用深度确定性策略梯度下降算法(DDPG)对IESP的优化定价问题进行求解,并在一个模拟算例当中将其与深度Q学习(DQN)所生成的定价策略进行比对。仿真结果具体分析了DIEM中能源价格的耦合关系以及综合能源定价与需求弹性之间的互相影响,提出的基于DDPG所产生的定价策略的总收益高于DQN算法6.8%。

关键词: 综合能源系统, 区域综合能源市场, 定价策略, 需求响应, 深度强化学习

Abstract:

Integrated energy market (IEM), being able to integrate multiple forms of energy transactions and promote the efficient use of energy, is growing and gradually taking place the traditional energy markets. District integrated energy market (DIEM), which serves as a link between the supply and demand side, is crucial for energy transaction and pricing, and affects the operation of integrated energy systems. Given this context, a DIEM transaction structure is constructed to optimize the pricing strategy for Energy Service Providers (IESPs) and the demand response mechanism for Integrated Energy Consumers (IECs). The double-layer decision-making optimization takes into account the elasticity of the energy demand, the uncertainty of the output of renewable energy sources, and privacy protection comprehensively. The optimal pricing of the IESP can be obtained by Deep Deterministic Policy Gradient (DDPG),which is compared with the pricing strategy made by Deep-Q-Learning(DQN) in a simulation case. The simulation analyzes the coupling relationship of energy prices in DIEM and the interaction between integrated energy pricing strategy and demand elasticity, showing that the revenue of the Integrated energy system obtained by DDPG is 6.8% higher than that made based on DQN.

Key words: integrated energy system, district integrated energy market, pricing strategy, demand response, deep reinforcement learning

中图分类号: