[1] |
董朝阳, 赵俊华, 文福拴, 等. 从智能电网到能源互联网:基本概念与研究框架[J]. 电力系统自动化, 2014, 38(15):1-11.
|
|
DONG Zhaoyang, ZHAO Junhua, WEN Fushuan, et al. From smart grid to energy internet:Basic concept and research framework[J]. Automation of Electric Power System, 2014. 38(15):1-11.
|
[2] |
谈金晶, 李扬. 多能源协同的交易模式研究综述[J]. 中国电机工程学报, 2019, 39(22):6483-6497.
|
|
TAN Jinjing, LI Yang. Review on transaction mode in multi-energy collaborative market[J]. Proceedings of the CSEE, 2019, 39(22):6483-6497.
|
[3] |
吕佳炜, 张沈习, 程浩忠, 等. 考虑互联互动的区域综合能源系统规划研究综述[J]. 中国电机工程学报, 2021, 41(12):4001-4021.
|
|
LYU Jiawei, ZHANG Shenxi, CHENG Haozhong, et al. Review on district-level integrated energy system planning considering interconnection and interaction[J]. Proceedings of the CSEE, 2021, 41(12):4001-4021.
|
[4] |
张颖梓, 李华强, 李旭翔, 等. 基于用户需求行为的综合能源服务产品定价策略研究[J]. 电力系统保护与控制, 2021, 49(17):121-129.
|
|
ZHANG Yingzi, LI Huaqiang, LI Xuxiang, et al. Pricing strategy of integrated energy service products based on user demand behavior[J]. Power System Protection and Control, 2021, 49(17):121-129.
|
[5] |
王俊, 徐箭, 柯德平, 等. 考虑多市场主体参与的气电区域综合能源系统市场定价策略[J]. 电力自动化设备, 2022, 42(9):18-26.
|
|
WANG Jun, XU Jian, KE Deping, et al. Market pricing strategy for gas-electricity integrated energy system considering multiple market entities[J]. Electric Power Automation Equipment, 2022, 42(9):18-26.
|
[6] |
卞心怡, 范宏, 曾博. 计及多重不确定性的低碳综合能源系统动态定价策略[J/OL]. 电测与仪表,1-12(2023-04-10)[2023-05-05]. http://kns.cnki.net/kcms/detail/23.1202.TH.20230407.1522.004.html.
|
|
BIAN Xinyi, FAN Hong, ZENG Bo. Dynamic pricing strategy of low-carbon integrated energy system considering multiple uncertainties[J/OL]. Electrical Measurement & Instrumentation,1-12(2023-04-10)[2023-05-05]. http://kns.cnki.net/kcms/detail/23.1202.TH.20230407.1522.004.html.
|
[7] |
曹阳, 喻洁, 李扬, 等. 基于演化博弈的区域综合能源市场零售侧竞争策略选择方法[J]. 电力系统自动化, 2023, 47(5):104-113.
|
|
CAO Yang, YU Jie, LI Yang, et al. Evolutionary game based competition strategy selection method for retail side of regional integrated energy market[J]. Automation of Power Electric System, 2023, 47(5):104-113.
|
[8] |
DOU X, WANG J, HU Q, et al. Bi-level bidding and multi-energy retail packages for integrated energy service providers considering multi-energy demand elasticity[J]. CSEE Journal of Power and Energy Systems, 2020.
|
[9] |
杨挺, 赵黎媛, 刘亚闯, 等. 基于深度强化学习的综合能源系统动态经济调度[J]. 电力系统自动化, 2021, 45(5):39-47.
|
|
YANG Ting, ZHAO Liyuan, LIU Yachuang, et al. Dynamic economic dispatch for integrated energy system based on deep reinforcement learning[J]. Automation of Power Electric System, 2021, 45(5):39-47.
|
[10] |
陈传杰, 杨海柱, 李梦龙, 等. 基于实时定价机制的综合能源系统多时间尺度优化调度[J]. 科学技术与工程, 2021, 21(12): 4968-4974.
|
|
CHEN Chuanjie, YANG Haizhu, LI Menglong, et al. Multi-time scale optimal scheduling of integrated energy systems based on real-time pricing mechanism[J]. Science Technology and Engineering, 2021, 21(12): 4968-4974.
|
[11] |
冯斌, 胡轶婕, 黄刚, 等. 基于深度强化学习的新型电力系统调度优化方法综述[J/OL]. 电力系统自动化:1-22(2023-04-03)[2023-05-07]. http://kns.cnki.net/kcms/detail/32.1180.TP.20230331.1354.004.html.
|
|
FENG Bin, HU Yijie, HUANG Gang, et al. Review on optimization methods for new power system dispatch based on deep reinforcement learning[J/OL]. Automation of Power Electric System:1-22(2023-04-03)[2023-05-07]. http://kns.cnki.net/kcms/detail/32.1180.TP.20230331.1354.004.html.
|
[12] |
SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.
doi: 10.1038/nature16961
|
[13] |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning[J]. arXiv preprint arXiv:1312.5602, 2013.
|
[14] |
孙庆凯, 王小君, 王怡, 等. 基于多智能体Nash-Q强化学习的综合能源市场交易优化决策[J]. 电力系统自动化, 2021, 45(16):124-133.
|
|
SUN Qingkai, WANG Xiaojun, WANG Yi, et al. Optimal trading decision-making for integrated energy market based on multi-agent Nash-Q reinforcement learning[J]. Automation of Power Electric System, 2021, 45(16):124-133.
|
[15] |
WU X, LIU B, YUAN S, et al. Pricing strategy of regional integrated energy system considering privacy protection based on deep reinforcement learning[J]. CSEE Journal of Power and Energy Systems, 2022.
|
[16] |
FAZLALIPOUR P, EHSAN M, MOHAMMADI-IVATLOO B. Risk-aware stochastic bidding strategy of renewable micro-grids in day-ahead and real-time markets[J]. Energy, 2019, 171: 689-700.
doi: 10.1016/j.energy.2018.12.173
|
[17] |
LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[J]. arXiv preprint arXiv:1509.02971, 2015.
|
[18] |
BOUSSETTA M, MOTAHHIR S, BACHTIRI R E, et al. Design and embedded implementation of a power management controller for wind-PV-diesel microgrid system[J]. International Journal of Photoenergy, 2019: 1-16.
|
[19] |
Information on individual ISO markets, market products, and ancillary services[EB/OL].[2023-06-03]. https://www.iso-ne.com/markets-operations/markets/.
|
[20] |
Heat demand profile[EB/OL].[2023-06-03]. https://www.esru.strath.ac.uk/EandE/Web_sites/17-18/gigha/heat-demand-profile.html.
|
[21] |
Decision intelligence,across the enterprise[EB/OL].[2023-06-03]. https://www.gurobi.com/.
|