综合智慧能源 ›› 2023, Vol. 45 ›› Issue (7): 97-106.doi: 10.3969/j.issn.2097-0706.2023.07.011
• 电力交易与管理 • 上一篇
葛磊蛟1(), 于惟坤2(
), 朱若源2,*(
), 王关涛2(
), 白星振2(
)
收稿日期:
2023-04-14
修回日期:
2023-05-30
接受日期:
2023-06-24
出版日期:
2023-07-25
通讯作者:
*朱若源(1997),男,在读硕士研究生,从事综合能源系统优化研究,982827570@qq.com。作者简介:
葛磊蛟(1984),男,副教授,博士,从事智能配电网态势感知、云计算和大数据方面的研究,legendglj@tju.edu.cn;基金资助:
GE Leijiao1(), YU Weikun2(
), ZHU Ruoyuan2,*(
), WANG Guantao2(
), BAI Xingzhen2(
)
Received:
2023-04-14
Revised:
2023-05-30
Accepted:
2023-06-24
Published:
2023-07-25
Supported by:
摘要:
综合能源系统是推动我国“双碳”目标实施,实现国家能源低碳转型的重要手段之一。为有效提升IES碳减排能力和经济效益水平,提出一种考虑改进阶梯式碳交易机制与需求响应的IES优化调度模型。首先,在能量中心框架下引入碳流模型,促进反应系统中二氧化碳的流动,并改进阶梯式碳交易机制,从而有力推动系统碳减排;其次,引入用户侧的多能需求响应,以价格激励推进用户用能方式转变,促进可再生能源消纳;最后,考虑决策者偏好,以改进碳交易机制为连接点,建立IES低碳经济优化调度模型,以碳排放指标和用户舒适度引导运行调度,并利用CPLEX求解器对IES模型进行求解。进一步,通过5种场景对所提模型和方法进行仿真验证,结果证明了改进碳交易机制、需求响应机制与优化调度模型的配合可有效提高IES的低碳性和经济性。
中图分类号:
葛磊蛟, 于惟坤, 朱若源, 王关涛, 白星振. 考虑改进阶梯式碳交易机制与需求响应的综合能源系统优化调度[J]. 综合智慧能源, 2023, 45(7): 97-106.
GE Leijiao, YU Weikun, ZHU Ruoyuan, WANG Guantao, BAI Xingzhen. Integrated energy system optimization scheduling considering improved stepped carbon trading mechanism and demand responses[J]. Integrated Intelligent Energy, 2023, 45(7): 97-106.
表5
5种场景调度结果
项目 | 场景1 | 场景2 | 场景3 | 场景4 | 场景5 |
---|---|---|---|---|---|
购能成本/元 | 18 077.1 | 17 892.8 | 17 481.2 | 17 265.2 | 16 614.9 |
弃风成本/元 | 334.5 | 334.5 | 55.8 | 0 | 128.1 |
需求响应补偿成本/元 | 0 | 0 | 641.3 | 768.5 | 819.0 |
碳交易成本/元 | 2 875.3 | 2 410.0 | 2 459.9 | 2 334.4 | 1 600.4 |
碳交易基价/增长率修正 | 0.50/0.25 | 0.50/0.50 | 0.50/0.50 | 0.50/0.50 | |
碳交易量/kg | 3 667.0 | 3 880.1 | 3 946.5 | 3 779.2 | 4 700.9 |
总成本/元 | 29 931.7 | 29 282.1 | 28 463.9 | 28 665.8 | 27 617.5 |
[1] | 黎静华, 朱梦姝, 陆悦江, 等. 综合能源系统优化调度综述[J]. 电网技术, 2021, 45(6):2256-2272. |
LI Jinghua, ZHU Mengshu, LU Yuejiang, et al. Review on optimal scheduling of integrated energy systems[J]. Power System Technology, 2021, 45(6): 2256-2272. | |
[2] |
HONG B W, ZHANG W T, ZHOU Y, et al. Energy-Internet-oriented microgrid energy management system architecture and its application in China[J]. Applied Energy, 2018, 228: 2153-2164.
doi: 10.1016/j.apenergy.2018.07.081 |
[3] | 骆钊, 卢涛, 马瑞, 等. 可再生能源配额制下多园区综合能源系统优化调度[J]. 电力自动化设备, 2021, 41(4): 8-14. |
LUO Zhao, LU Tao, MA Rui, et al. Optimal scheduling of multipark integrated energy system under renewable portfolio standard[J]. Electric Power Automation Equipment, 2021, 41(4): 8-14. | |
[4] | MA W X, DENG W, PEI W, et al. Operation optimization of electric power-hot water-steam integrated energy system[J]. Energy Reports, 2022, 8: 475-482. |
[5] |
曾慧, 杜源, 李涛, 等. 考虑碳交易与绿证交易的电-热耦合园区低碳规划[J]. 综合智慧能源, 2023, 45(2): 22-29.
doi: 10.3969/j.issn.2097-0706.2023.02.003 |
ZENG Hui, DU Yuan, LI Tao, et al. Low-carbon planning of a park-level integrated electric and heating system considering carbon trading and green certificate trading[J]. Integrated Intelligent Energy, 2023, 45(2):22-29.
doi: 10.3969/j.issn.2097-0706.2023.02.003 |
|
[6] | 张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46(8):189-207. |
ZHANG Shenxi, WANG Danyang, CHENG Haozhong, et al. Key technologies and challenges of low-carbon integrated energy system planning for dual carbon targets[J]. Automation of Electric Power Systems, 2022, 46(8):189-207. | |
[7] | 尹硕, 郭兴五, 燕景, 等. 考虑高渗透率和碳排放约束的园区综合能源系统优化运行研究[J]. 华电技术, 2021, 43(4): 1-7. |
YIN Shuo, GUO Xingwu, YAN Jing, et al. Study on optimized operation on integrated energy system in parks with high permeability and carbon emission constraints[J]. Huadian Technology, 2021, 43(4): 1-7. | |
[8] | 朱海东, 郝浩, 郑剑, 等. 基于冷热电多能互补的园区综合能源系统设计[J]. 华电技术, 2021, 43(4): 34-38. |
ZHU Haidong, HAO Hao, ZHENG Jian, et al. Design of integrated energy system for parks based on complementation of cold, heat and electricity[J]. Huadian Technology, 2021, 43(4): 34-38. | |
[9] | WANG Y L, WANG X H, YU H Y, et al. Optimal design of integrated energy system considering economics, autonomy and carbon emissions[J]. Journal of Cleaner Production, 2019, 115(5):563-578. |
[10] | 章文浦, 王强钢. 基于遗传算法的分布式多能互补能源系统优化配置[J]. 华电技术, 2021, 43(1): 52-58. |
ZHANG Wenpu, WANG Qianggang. Optimized allocation of multi-energy complementary distributed energy system based on genetic algorithm[J]. Huadian Technology, 2021, 43(1): 52-58. | |
[11] | 卢志刚, 郭凯, 闫桂红, 等. 考虑需求响应虚拟机组和碳交易的含风电电力系统优化调度[J]. 电力系统自动化, 2017, 41(15): 58-65. |
LU Zhigang, GUO Kai, YAN Guihong, et al. Optimal dispatch of power system integrated with wind power considering virtual generator units of demand response and carbon trading[J]. Automation of Electric Power Systems, 2017, 41(15): 58-65. | |
[12] | 秦婷, 刘怀东, 王锦桥, 等. 基于碳交易的电-热-气综合能源系统低碳经济调度[J]. 电力系统自动化, 2018, 42(14): 8-13,22. |
QIN Ting, LIU Huaidong, WANG Jinqiao, et al. Carbon trading based low-carbon economic dispatch for integrated electricity-heat-gas energy system[J]. Automation of Electric Power Systems, 2018, 42(14): 8-13,22. | |
[13] |
魏震波, 马新如, 郭毅, 等. 碳交易机制下考虑需求响应的综合能源系统优化运行[J]. 电力建设, 2022, 43(1):1-9.
doi: 10.12204/j.issn.1000-7229.2022.01.001 |
WEI Zhenbo, MA Xinru, GUO Yi, et al. Optimized operation of integrated energy system considering demand response under carbon trading mechanism[J]. Electric Power Construction, 2022, 43(1): 1-9.
doi: 10.12204/j.issn.1000-7229.2022.01.001 |
|
[14] | 陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41(9): 48-55. |
CHEN Jinpeng, HU Zhijian, CHEN Yingguang, et al. Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J]. Electric Power Automation Equipment, 2021, 41(9): 48-55. | |
[15] | 胡静哲, 王旭, 蒋传文, 等. 考虑区域碳排放均衡性的电力系统最优阶梯碳价[J]. 电力系统自动化, 2020, 44(6): 98-107. |
HU Jingzhe, WANG Xu, JIANG Chuanwen, et al. Optimal tiered carbon price of power system considering equilibrium of regional carbon emission[J]. Automation of Electric Power Systems, 2020, 44(6): 98-107. | |
[16] | 李东东, 张凯, 姚寅, 等. 基于信息间隙决策理论的电动汽车聚合商日前需求响应调度策略[J]. 电力系统保护与控制, 2022, 50(24):101-111. |
LI Dongdong, ZHANG Kai, YAO Yin, et al. Day-ahead demand response scheduling strategy of an electric vehicle aggregator based on information gap decision theory[J]. Power System Protection and Control, 2022, 50(24):101-111. | |
[17] | 贠保记, 张恩硕, 张国, 等. 考虑综合需求响应与“双碳”机制的综合能源系统优化运行[J]. 电力系统保护与控制, 2022, 50(22):11-19. |
YUN Baoji, ZHANG Enshuo, ZHANG Guo, et al. Optimal operation of an integrated energy system considering integrated demand response and a "dual carbon" mechanism[J]. Power System Protection and Control, 2022, 50(22):11-19. | |
[18] |
许志荣, 张高瑞. 响应用户有限理性需求的微电网优化策略[J]. 综合智慧能源, 2022, 44(11): 43-49.
doi: 10.3969/j.issn.2097-0706.2022.11.006 |
XU Zhirong, ZHANG Gaorui. Optimization strategy of microgrid responding users' bounded rational demand[J]. Integrated Intelligent Energy, 2022, 44(11): 43-49.
doi: 10.3969/j.issn.2097-0706.2022.11.006 |
|
[19] | 崔杨, 曾鹏, 王铮, 等. 计及电价型需求侧响应含碳捕集设备的电-气-热综合能源系统低碳经济调度[J]. 电网技术, 2021, 45(2): 447-461. |
CUI Yang, ZENG Peng, WANG Zheng, et al. Low-carbon economic dispatch of electricity-gas-heat integrated energy system with carbon capture equipment considering price-based demand response[J]. Power System Technology, 2021, 45(2): 447-461. | |
[20] | 陈锦鹏, 胡志坚, 陈嘉滨, 等. 考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度[J]. 高电压技术, 2021, 47(9): 3094-3106. |
CHEN Jinpeng, HU Zhijian, CHEN Jiabin, et al. Low-carbon economic dispatch of electricity-gas-heat integrated energy system with carbon capture equipment considering price-based demand response[J]. Power System Technology, 2021, 47(9):3094-3106. | |
[21] | 栗然, 彭湘泽, 吕慧敏, 等. 考虑氢储能和需求响应的综合能源系统双层优化配置[J/OL]. 华北电力大学学报(自然科学版), 2022.(2022-07-13)[2023-04-10]. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD65HZSBVVNne0dvJHX9H96DUBUt3xeYykub2UyKudZ0_gltkvbEzlP95&uniplatform=NZKPT. |
LI Ran, PENG Xiangze, LYU Huimin, et al. Two-layer optimal configuration for integrated energy system regarding hydrogen storage and demand response[J/OL]. Journal of North China Electric Power University (Natural Science Edition), 2022.(2022-07-13) [2023-04-10]. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD65HZSBVVNne0dvJHX9H96DUBUt3xeYykub2UyKudZ0_gltkvbEzlP95&uniplatform=NZKPT. | |
[22] |
YANG S B, LIN H Y, MA J, et al. A two-stage operation optimization model for isolated integrated energy systems with concentrating solar power plant considering multi-energy and multi-type demand response[J]. Energy Reports, 2022, 8(8): 13320-13332.
doi: 10.1016/j.egyr.2022.10.015 |
[23] |
徐恒志, 周博文, 李广地, 等. 含水源热泵的区域综合能源系统低碳运行优化研究[J]. 综合智慧能源, 2022, 44(1): 39-48.
doi: 10.3969/j.issn.2097-0706.2022.01.006 |
XU Hengzhi, ZHOU Bowen, LI Guangdi, et al. Research on optimal operation of the regional integrated energy system with water-source heat pumps[J]. Integrated Intelligent Energy, 2022, 44(1):39-48.
doi: 10.3969/j.issn.2097-0706.2022.01.006 |
|
[24] |
钟鹏元, 杨晓宏, 寇建玉. 含储氢结构的园区综合能源系统优化配置研究[J]. 综合智慧能源, 2022, 44(9): 11-19.
doi: 10.3969/j.issn.2097-0706.2022.09.002 |
ZHONG Pengyuan, YANG Xiaohong, KOU Jianyu. Research on the optimal configuration of integrated energy systems for parks with hydrogen storage devices[J]. Integrated Intelligent Energy, 2022, 44(9):11-19.
doi: 10.3969/j.issn.2097-0706.2022.09.002 |
|
[25] |
王翔, 胡明, 闫岩, 等. 基于改进量子粒子群算法的综合能源系统优化配置[J]. 综合智慧能源, 2022, 44(10): 19-24.
doi: 10.3969/j.issn.2097-0706.2022.10.003 |
WANG Xiang, HU Ming, YAN Yan, et al. Optimal configuration of integrated energy system based on improved quantum particle swarm optimization[J]. Integrated Intelligent Energy, 2022, 44(10):19-24.
doi: 10.3969/j.issn.2097-0706.2022.10.003 |
|
[26] |
YAN N, MA G C, LI X J, et al. Low-carbon economic dispatch method for integrated energy system considering seasonal carbon flow dynamic balance[J]. IEEE Transactions on Sustainable Energy, 2023, 14(1):576-586.
doi: 10.1109/TSTE.2022.3220797 |
[27] |
ZHANG D D, ZHU H Y, ZHANG H C, et al. Multi-objective optimization for smart integrated energy system considering demand responses and dynamic prices[J]. IEEE Transactions on Smart Grid, 2022, 13(2):1100-1112.
doi: 10.1109/TSG.2021.3128547 |
[28] | 胡可心, 李康平, 刘春阳, 等. 动态分时电价下居民用户需求响应基线负荷预测方法[J/OL]. 电测与仪表, 2023. (2023-01-07)[2023-04-10]. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD64iLFH7p67cuMWhQEKTJUS2Wa-TlFhaFWcgVPpeU0yBKLug_KyxxOgA&uniplatform=NZKPT. |
HU Kexin, LI Kangping, LIU Chunyang, et al. A baseline load forecasting method for residential demand response under dynamic time-of-use electricity price[J/OL]. Electrical Measurement & Instrumentation, 2023. (2023-01-07)[2023-04-10]. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD64iLFH7p67cuMWhQEKTJUS2Wa-TlFhaFWcgVPpeU0yBKLug_KyxxOgA&uniplatform=NZKPT. |
[1] | 李菲菲, 徐绘薇, 崔金栋. 基于STIRPAT模型的吉林省石化行业碳排放影响因素研究[J]. 综合智慧能源, 2024, 46(8): 12-19. |
[2] | 李菲菲, 王舒泓, 崔金栋. 全生命周期视角下汽车产业碳排放影响因素的研究——以吉林省为例[J]. 综合智慧能源, 2024, 46(8): 20-27. |
[3] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[4] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[5] | 何方波, 裴力耕, 郑睿, 范康健, 张晓曼, 李更丰. “源网荷储”协同助力陕西省新型电力系统建设[J]. 综合智慧能源, 2024, 46(7): 40-46. |
[6] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[7] | 李明扬, 窦梦园. 基于强化学习的含电动汽车虚拟电厂优化调度[J]. 综合智慧能源, 2024, 46(6): 27-34. |
[8] | 郑庆明, 井延伟, 梁涛, 柴露露, 吕梁年. 基于DDPG算法的离网型可再生能源大规模制氢系统优化调度[J]. 综合智慧能源, 2024, 46(6): 35-43. |
[9] | 龚钢军, 王路遥, 常卓越, 柳旭, 邢汇笛. 基于能源枢纽的综合能源信息物理系统安全防护架构研究[J]. 综合智慧能源, 2024, 46(5): 65-72. |
[10] | 李云, 周世杰, 胡哲千, 梁均原, 肖雷鸣. 基于NSGA-Ⅱ-WPA的综合能源系统多目标优化调度[J]. 综合智慧能源, 2024, 46(4): 1-9. |
[11] | 史明明, 朱睿, 刘瑞煌. 交直流电力系统与供热系统联合经济调度[J]. 综合智慧能源, 2024, 46(4): 10-16. |
[12] | 陈勇, 肖雷鸣, 王井南, 吴健. 基于场景扩充的低碳综合能源系统高可靠性容量规划方法[J]. 综合智慧能源, 2024, 46(4): 24-33. |
[13] | 王京龙, 王晖, 杨野, 郑颖颖. 考虑多重不确定性的电-热-气综合能源系统协同优化方法[J]. 综合智慧能源, 2024, 46(4): 42-51. |
[14] | 钟永洁, 王紫东, 左建勋, 王常青, 李靖霞, 纪陵. 计及多时段尺度与地域分层的多能互补系统经济调度[J]. 综合智慧能源, 2024, 46(4): 52-59. |
[15] | 孙健, 张云帆, 蔡潇龙, 刘鼎群. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||