综合智慧能源 ›› 2025, Vol. 47 ›› Issue (1): 1-9.doi: 10.3969/j.issn.2097-0706.2025.01.001

• 基于AI的新型电力系统调度 •    下一篇

基于可解释强化学习的智能虚拟电厂最优调度

袁孝科1a(), 沈石兰2, 张茂松1b, 石晨旭1a, 杨凌霄1a()   

  1. 1.安徽大学,a.人工智能学院;b.电气工程与自动化学院,合肥 230601
    2.广东电网有限公司广州供电局,广州 510630
  • 收稿日期:2024-08-27 修回日期:2024-09-08 出版日期:2025-01-25
  • 作者简介:袁孝科(1998),男,硕士生,从事可解释强化学习在电力系统的优化调度方面的研究,1468710085@qq.com
    杨凌霄(1992),女,特聘副教授,硕士生导师,博士,从事人工智能在能源系统的应用方面的研究,yanglingxiao@ahu.edu.cn
  • 基金资助:
    国家自然科学基金项目(62303006)

Optimal scheduling of intelligent virtual power plants based on explainable reinforcement learning

YUAN Xiaoke1a(), SHEN Shilan2, ZHANG Maosong1b, SHI Chenxu1a, YANG Lingxiao1a()   

  1. 1. a. School of Artificial Intelligence;b. School of Electrical Engineering and Automation,Anhui University,Hefei 230601,China
    2. Guangzhou Power Supply Bureau,Guangdong Power Grid Company Limited,Guangzhou 510630,China
  • Received:2024-08-27 Revised:2024-09-08 Published:2025-01-25
  • Supported by:
    National Natural Science Foundation of China(62303006)

摘要:

随着电动汽车的不断普及,能源系统日益复杂。虚拟电厂(VPP)可以通过物联网和人工智能技术,将分布式电源、储能系统、可控负荷以及EV等分布式能源进行聚合和协调优化,有助于提升能源的使用效率,并促进非可再生能源的消纳,增强电网稳定性。现阶段人工智能技术在电力系统等安全要求较高的应用领域缺乏可靠性和透明度,可能导致用户和运营商难以理解算法如何做出特定的能源调配决策。针对人工智能技术下的VPP实现最优调度并兼顾解释其决策过程的平衡问题,提出一种可解释强化学习的交互式框架,使用近端策略优化算法实现VPP的最优调度,并使用决策树建立一种可解释性强化学习框架,用于提供透明的决策支持,使非专业用户能够理解人工智能在调节能源系统方面的决策过程。试验表明,与传统强化学习优化方法相比,该方法不仅提高了能源分配的效率,而且通过增强模型的可解释性,加强了用户对智能VPP管理系统的信任。

关键词: 虚拟电厂, 电动汽车, 近端策略优化算法, 强化学习, 决策树, 可解释性框架, 分布式电源, 人工智能

Abstract:

With the increasing popularity of electric vehicles(EVs),energy systems are becoming more complex. Virtual power plants(VPPs)can aggregate and optimize distributed energy resources such as distributed generation,energy storage systems,controllable loads,and EVs through internet of things(IoT)and artificial intelligence(AI)technologies,enhancing energy efficiency and facilitating the consumption of non-renewable energy while reinforcing grid stability. However,current AI technologies lack reliability and transparency in high-safety applications like power systems,potentially making it challenging for users and operators to understand how algorithms make specific energy allocation decisions. To address the balance between achieving optimal scheduling of VPPs utilizing AI and explaining the decision-making processes,this study proposed an interactive framework based on explainable reinforcement learning. This framework employed the proximal policy optimization(PPO)algorithm for optimal scheduling of VPPs and constructed an explainable reinforcement learning framework using decision trees to provide transparent decision support that enabled non-expert users to understand AI's decision-making processes in regulating energy systems. The results indicated that compared to traditional reinforcement learning optimization methods,this approach not only improved energy allocation efficiency but also strengthened user trust in intelligent VPP management systems by enhancing model interpretability.

Key words: virtual power plant, electric vehicle, proximal policy optimization algorithm, reinforcement learning, decision tree, explainable framework, distributed energy, artificial intelligence

中图分类号: