[1] |
杨力帆, 周鲲, 齐增清, 等. 基于需求响应的虚拟电厂多时间尺度优化调度[J]. 电网与清洁能源, 2024, 40(3): 10-21.
|
|
YANG Lifan, ZHOU Kun, QI Zengqing, et al. A multi-time scale optimal scheduling strategy of virtual power plants based on demand response[J]. Power System and Clean Energy, 2024, 40(3): 10-21.
|
[2] |
张静, 李昊, 李文, 等. 面向碳中和的中国电能替代发展路径规划方法探讨[J]. 电力建设, 2022, 43(9): 47-53.
doi: 10.12204/j.issn.1000-7229.2022.09.005
|
|
ZHANG Jing, LI Hao, LI Wen, et al. Discussion on the pathways of China's electrification polices to pursue the carbon neutralization target[J]. Electric Power Construction, 2022, 43(9): 47-53.
doi: 10.12204/j.issn.1000-7229.2022.09.005
|
[3] |
CHEN S J, LIU C C. From demand response to transactive energy: State of the art[J]. Journal of Modern Power Systems and Clean Energy, 2017, 5(1): 10-19.
|
[4] |
王康平, 黄曲粲, 张兴科, 等. 考虑调峰成本的大规模电动汽车分群调度策略[J]. 综合智慧能源, 2022, 44(11): 12-19.
doi: 10.3969/j.issn.2097-0706.2022.11.002
|
|
WANG Kangping, HUANG Qucan, ZHANG Xingke, et al. Strategy for large-scale electric vehicles cluster scheduling considering peak-shaving cost[J]. Integrated Intelligent Energy, 2022, 44(11): 12-19.
doi: 10.3969/j.issn.2097-0706.2022.11.002
|
[5] |
何金松, 叶鹏, 张涛, 等. 面向电力系统应用的空调负荷研究综述[J]. 沈阳工程学院学报(自然科学版), 2019, 15(4): 343-349.
|
|
HE Jinsong, YE Peng, ZHANG Tao, et al. Research overview of air conditioning load for power system application[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2019, 15(4): 343-349.
|
[6] |
皎月. 2022新能源汽车产业排行[J]. 互联网周刊, 2023(9):8-9.
|
|
JIAO Yue. 2022 New energy vehicle industry ranking[J]. China Internet Week, 2023(9):8-9.
|
[7] |
徐筝, 孙宏斌, 郭庆来. 综合需求响应研究综述及展望[J]. 中国电机工程学报, 2018, 38(24): 7194-7205.
|
|
XU Zheng, SUN Hongbin, GUO Qinglai. Review and prospect of integrated demand response[J]. Proceedings of the CSEE, 2018, 38(24): 7194-7205.
|
[8] |
王彩霞, 时智勇, 梁志峰, 等. 新能源为主体电力系统的需求侧资源利用关键技术及展望[J]. 电力系统自动化, 2021, 45(16): 37-48.
|
|
WANG Caixia, SHI Zhiyong, LIANG Zhifeng, et al. Key technologies and prospects of demand-side resource utilization for power systems dominated by renewable energy[J]. Automation of Electric Power Systems, 2021, 45(16): 37-48.
|
[9] |
曹紫霖, 王文静, 赵薇, 等. 考虑需求响应的负荷密集区分布式综合能源系统优化调度研究[J]. 综合智慧能源, 2023, 45(7): 11-21.
doi: 10.3969/j.issn.2097-0706.2023.07.002
|
|
CAO Zilin, WANG Wenjing, ZHAO Wei, et al. Research on optimal scheduling of distributed integrated energy systems in load-intensive areas considering demand response[J]. Integrated Intelligent Energy, 2023, 45(7): 11-21.
doi: 10.3969/j.issn.2097-0706.2023.07.002
|
[10] |
刘健, 刘雨鑫, 庄涵羽. 虚拟电厂关键技术及其建设实践[J]. 综合智慧能源, 2023, 45(6): 59-65.
doi: 10.3969/j.issn.2097-0706.2023.06.008
|
|
LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants[J]. Integrated Intelligent Energy, 2023, 45(6): 59-65.
doi: 10.3969/j.issn.2097-0706.2023.06.008
|
[11] |
SOWA T, VASCONCELOS M, SCHNETTLER A, et al. Method for the operation planning of virtual power plants considering forecasting errors of distributed energy resources[J]. Electrical Engineering, 2016, 98(4): 347-354.
|
[12] |
谢敏, 黄莹, 李弋升, 等. 分布式能源动态聚合于虚拟电厂的演化博弈决策方法和机理分析[J]. 电网技术, 2023, 47(12): 4958-4977.
|
|
XIE Min, HUANG Ying, LI Yisheng, et al. Evolutionary game decision and mechanism analysis of dynamical aggregation of distributed energy resources into virtual power plant[J]. Power System Technology, 2023, 47(12): 4958-4977.
|
[13] |
梅书凡. 市场条件下含多种分布式能源的虚拟电厂运营优化研究[D]. 北京: 华北电力大学, 2022.
|
|
MEI Shufan. Research on operation optimization of virtual power plant with multi-distributed energy under market conditions[D]. Beijing: North China Electric Power University, 2022.
|
[14] |
KUMAR P A, KUMAR J V, SABHAHIT JAYALAKSHMI N. Real-time peak valley pricing based multi-objective optimal scheduling of a virtual power plant considering renewable resources[J]. Energies, 2022, 15(16): 5970.
|
[15] |
TAN Y T, ZHI Y M, LUO Z B, et al. Optimal scheduling of virtual power plant with flexibility margin considering demand response and uncertainties[J]. Energies, 2023, 16(15):5833.
|
[16] |
CAO J Y, ZHENG Y Y, HAN X R, et al. Two-stage optimization of a virtual power plant incorporating with demand response and energy complementation[J]. Energy Reports, 2022, 87374-7385.
|
[17] |
LIU Z, ZHENG W, QI F, et al. Optimal dispatch of a virtual power plant considering demand response and carbon trading[J]. Energies, 2018, 11(6): 1488-1488.
|
[18] |
焦丰顺, 张杰, 任畅翔, 等. 多种绿色能源形态下的虚拟电厂定价机制研究[J]. 南方能源建设, 2020, 7(1): 133-139.
|
|
JIAO Fengshun, ZHANG Jie, REN Changxiang, et al. Research on pricing mechanism of virtual power plants containing multiple green energy sources[J]. Southern Energy Construction, 2020, 7(1): 133-139.
|
[19] |
CHEN W, QIU J, ZHAO J, et al. Customized rebate pricing mechanism for virtual power plants using a hierarchical game and reinforcement learning approach[J]. IEEE Transactions on Smart Grid, 2023, 14(1): 424-439.
|
[20] |
张忠伟. 考虑源荷双重不确定性的虚拟电厂内部定价机制研究[D]. 重庆: 重庆工商大学, 2023.
|
|
ZHANG Zhongwei. Research on internal pricing mechanism of virtual power plant considering double uncertainty of source and load[D]. Chongqing: Chongqing Technology and Business University, 2023.
|
[21] |
魏震波, 马新如, 郭毅, 等. 碳交易机制下考虑需求响应的综合能源系统优化运行[J]. 电力建设, 2022, 43(1): 1-9.
doi: 10.12204/j.issn.1000-7229.2022.01.001
|
|
WEI Zhenbo, MA Xinru, GUO Yi, et al. Optimized operation of integrated energy system considering demand response under carbon trading mechanism[J]. Electric Power Construction, 2022, 43(1): 1-9.
doi: 10.12204/j.issn.1000-7229.2022.01.001
|
[22] |
李嘉媚, 艾芊. 考虑调峰辅助服务的虚拟电厂运营模式[J]. 电力自动化设备, 2021, 41(6): 1-13.
|
|
LI Jiamei, AI Qian. Operation mode of virtual power plant considering peak regulation auxiliary service[J]. Electric Power Automation Equipment, 2021, 41(6): 1-13.
|