综合智慧能源 ›› 2025, Vol. 47 ›› Issue (3): 32-46.doi: 10.3969/j.issn.2097-0706.2025.03.004
张冬冬1a,1b,2(), 单琳珂1a,1b, 刘天皓1a,3,*(
)
收稿日期:
2024-08-15
修回日期:
2024-09-15
接受日期:
2024-11-01
出版日期:
2025-03-25
通讯作者:
*刘天皓(1990),男,高级工程师,博士,从事新能源发电及数据中心方面的研究,thliu@eee.hku.hk。作者简介:
张冬冬(1990),男,副教授,博士,从事新型电力系统与能源互联网方面的研究, dongdongzhang@gxu.edu.cn。
基金资助:
ZHANG Dongdong1a,1b,2(), SHAN Linke1a,1b, LIU Tianhao1a,3,*(
)
Received:
2024-08-15
Revised:
2024-09-15
Accepted:
2024-11-01
Published:
2025-03-25
Supported by:
摘要:
随着全球可再生能源需求的持续增长,如何高效、智能地管理和预测可再生能源发电已成为能源领域的关键研究课题。探讨了人工智能技术在可再生能源发电中多维数据处理和智能预测方面的应用,并重点分析了其在处理复杂且具有高可变性的数据中的作用。从气象条件和时空特征的角度研究了多维特征挖掘技术在风能和太阳能发电数据处理中的作用。系统分析了在不同时空尺度和多场景下应用的智能预测技术,特别聚焦于机器学习和深度学习模型,这些模型因在处理非线性、高维数据时的优异表现而备受关注。最新研究成果的全面分析验证了这些技术在提升风能和太阳能发电预测准确性和效率方面的显著优势。此外,深入探讨了当前技术的优势与局限,并展望了未来的发展方向,尤其强调了提升智能预测模型鲁棒性、实时性及其在不同场景下适应能力的重要性。这些研究为进一步推动可再生能源领域的发展提供了理论依据和实践指导。
中图分类号:
张冬冬, 单琳珂, 刘天皓. 人工智能技术在风力与光伏发电数据挖掘及功率预测中的应用综述[J]. 综合智慧能源, 2025, 47(3): 32-46.
ZHANG Dongdong, SHAN Linke, LIU Tianhao. Review on the application of artificial intelligence in data mining and wind and photovoltaic power forecasting[J]. Integrated Intelligent Energy, 2025, 47(3): 32-46.
表1
时空特征挖掘方法优缺点
方法类型 | 优点 | 缺点 | 准确度 | 计算时间 | 资源消耗 | 数据需求 | 可解释性 |
---|---|---|---|---|---|---|---|
物理方法 | 依靠物理定律,准确性高;适合理解和解释物理现象;模型透明度高,易于调试 | 模型复杂度高,计算量大;需要高质量数据;难以处理复杂和非线性问题 | 高 | 中等 | 较低 | 中等 | 高 |
统计方法 | 适合处理大型数据集;可提供概率预测 | 难以捕捉数据中的复杂关系 | 中等 | 较短 | 较高 | 较少 | 中等 |
人工智能方法 | 能够处理复杂的非线性问题;自适应学习能力强,模型性能高;适合实时预测和大数据分析 | 模型训练时间长,计算资源消耗大;模型可解释性差;需要大量标注数据进行训练 | 高 | 长 | 低 | 多 | 较低 |
组合方法 | 综合多种方法的优势,提高预测精度,灵活性高;可适应不同场景要求 | 模型结构复杂,难以实施;需要协调不同方法之间的冲突;参数调整困难,开发周期长 | 较高 | 较长 | 中等 | 中等 | 中等 |
表2
基于人工智能的预测模型优缺点及适用场景
模型类型 | 适用场景 | 优点 | 缺点 | 适用时间尺度 | 适用空间尺度 |
---|---|---|---|---|---|
传统机器学习模型 | 数据量较小且特征相对稳定的预测任务 | 训练速度快,模型简单且易解释 | 对复杂非线性关系和长期依赖关系的捕捉能力较弱 | 超短期预测、数据较少的中长期预测 | 单一机组 |
深度学习模型 | 数据量大且非线性关系复杂的预测任务 | 能捕捉复杂的非线性关系和长期依赖 | 需要大量数据和计算资源,容易过拟合,解释性较弱 | 短期预测和中长期预测(尤其是非线性和长期依赖显著的任务) | 单一机组、单一电场、多电场集群 |
强化学习模型 | 动态变化环境中需要实时决策的预测任务 | 自适应性强,能够在动态环境中学习和优化策略 | 训练难度大,稳定性可能较差,调参复杂 | 超短期和短期预测(尤其是在动态环境中) | 单一机组、单一电场 |
混合模型 | 需要整合不同模型优势的综合预测任务 | 能结合不同模型的优势,提高预测精度和鲁棒性 | 模型结构复杂,训练时间长,计算资源需求高 | 超短期到中长期预测(尤其是复杂场景下的预测任务) | 单一机组、单一电场、多电场集群 |
[1] | 刘华军, 石印, 郭立祥, 等. 新时代的中国能源革命: 历程、成就与展望[J]. 管理世界, 2022, 38(7): 6-24. |
LIU Huajun, SHI Yin, GUO Lixiang, et al. China's energy reform in the new era: Process, achievements and prospects[J]. Journal of Management World, 2022, 38(7): 6-24. | |
[2] | 赵国涛, 钱国明, 王盛. “双碳”目标下绿色电力低碳发展的路径分析[J]. 华电技术, 2021, 43(6): 11-20. |
ZHAO Guotao, QIAN Guoming, WANG Sheng. Analysis on green and low-carbon development path for power industry to realize carbon peak and carbon neutrality[J]. Huadian Technology, 2021, 43(6): 11-20. | |
[3] | IRENA. Renewable capacity statistics 2024[EB/OL].(2024-03-27)[2024-08-01]. https://www.irena.org/Publications/2024/Mar/Renewable-capacity-statistics-2024. |
[4] | 高帆, 包道日娜, 狄彦强, 等. 考虑风光出力动态相关性的场景生成方法[J]. 太阳能学报, 2024, 45(8): 256-264. |
GAO Fan, BAO Daorina, DI Yanqiang, et al. Scene generation method considering dynamic correlation of wind and photovoltaic outputs[J]. Acta Energiae Solaris Sinica, 2024, 45(8): 256-264. | |
[5] | JHA S K, BILALOVIC J, JHA A, et al. Renewable energy: Present research and future scope of Artificial Intelligence[J]. Renewable and Sustainable Energy Reviews, 2017, 77: 297-317. |
[6] | 杨明, 李梦林, 王勃, 等. 面向新型电力系统发展需求的数值天气预报技术及应用综述[J]. 电力系统自动化: 1-23. |
YANG Ming, LI Menglin, WANG Bo, et al. Review of numerical weather prediction techniques and applications for the development of new power systems[J]. Automation of Electric Power Systems: 1-23. | |
[7] | SHAMS M H, HAIDER N, BEHZAD H, et al. Artificial intelligence-based prediction and analysis of the oversupply of wind and solar energy in power systems[J]. Energy Conversion and Management, 2021, 250: 114892. |
[8] | PAL B, THEODOROS E. Artificial intelligence to support the integration of variable renewable energy sources to the power system[J]. Applied Energy, 2021, 290: 116754. |
[9] | TALAAT F M, KABEEL A, SHABAN W M. The role of utilizing artificial intelligence and renewable energy in reaching sustainable development goals[J]. Renewable Energy, 2024, 235: 121311. |
[10] | 汪鸿, 朱正甲, 陈建华, 等. 基于人工智能技术与物理方法结合的新能源功率预测研究[J]. 高电压技术, 2023, 49(S1): 111-117. |
WANG Hong, ZHU Zhengjia, CHEN Jianhua, et al. Research on new energy power prediction based on artificial intelligence technology and physical method[J]. High Voltage Engineering, 2023, 49(S1): 111-117. | |
[11] | 陈羽飞, 赵琦, 何永君, 等. 人工智能在电力系统中的应用综述[J]. 分布式能源, 2023, 8(6): 49-57. |
CHEN Yufei, ZHAO Qi, HE Yongjun, et al. An overview of the application of artificial intelligence in power systems[J]. Distributed Energy, 2023, 8(6): 49-57. | |
[12] | 万灿, 宋永华. 新能源电力系统概率预测理论与方法及其应用[J]. 电力系统自动化, 2021, 45(1): 2-16. |
WAN Can, SONG Yonghua. Theories, methodologies and applications of probabilistic forecasting for power systems with renewable energy sources[J]. Automation of Electric Power Systems, 2021, 45(1): 2-16. | |
[13] | 赵爽. 光伏/热系统“光谱网格” 及聚光分频一体化技术研究[D]. 北京: 华北电力大学, 2022. |
ZHAO Shuang. Research on the "spectral grid" and the integration technology of light concentration and frequency division of photovoltaic/thermal system[D]. Beijing: North China Electric Power University, 2022. | |
[14] | 于乐岭, 郭师洋. 电力工程中新能源发电技术的发展路径与应用实践[J]. 电工技术, 2024(8): 39-42. |
YU Leling, GUO Shiyang. The development path and application practice of new energy generation technology in electric power engineering[J]. Electric Engineering, 2024(8): 39-42. | |
[15] |
王芸芸, 马志程, 周强, 等. 计及公平性的多能合作博弈鲁棒优化调度[J]. 综合智慧能源, 2023, 45(2): 10-21.
doi: 10.3969/j.issn.2097-0706.2023.02.002 |
WANG Yunyun, MA Zhicheng, ZHOU Qiang, et al. Robust optimal scheduling of multi-energy cooperative game considering fairness[J]. Integrated Intelligent Energy, 2023, 45(2): 10-21.
doi: 10.3969/j.issn.2097-0706.2023.02.002 |
|
[16] | 师芊芊. 计及复杂天气条件的新能源功率预测及优化配置研究[D]. 北京: 北方工业大学, 2024. |
SHI Qianqian. Research on new energy power prediction and optimal allocation considering complex weather conditions[D]. Beijing: North China University of Technology, 2024. | |
[17] | 孟安波, 陈嘉铭, 黎湛联, 等. 基于相似日理论和CSO-WGPR的短期光伏发电功率预测[J]. 高电压技术, 2021, 47(4): 1176-1184. |
MENG Anbo, CHEN Jiaming, LI Zhanlian, et al. Short-term photovoltaic power generation prediction based on similar day theory and CSO-WGPR[J]. High Voltage Engineering, 2021, 47(4): 1176-1184. | |
[18] | 杨国清, 张凯, 王德意, 等. 基于包络线聚类的多模融合超短期光伏功率预测算法[J]. 电力自动化设备, 2021, 41(2): 39-46. |
YANG Guoqing, ZHANG Kai, WANG Deyi, et al. Multi-mode fusion ultra-short-term photovoltaic power prediction algorithm based on envelope clustering[J]. Electric Power Automation Equipment, 2021, 41(2): 39-46. | |
[19] | 赵洪山, 孙承妍, 温开云. 基于多气象类型加权和改进高斯混合模型的光伏出力超短期概率预测[J]. 太阳能学报, 2024, 45(7): 567-576. |
ZHAO Hongshan, SUN Chengyan, WEN Kaiyun. Ultra-short-term probability prediction of PV output based on multi-weather-type-weighted and improved Gaussian mixture model[J]. Acta Energiae Solaris Sinica, 2024, 45(7): 567-576. | |
[20] | 孟亦康, 许野, 王鑫鹏, 等. 基于相似日选取和PCA-LSTM的光伏出力组合预测模型研究[J]. 太阳能学报, 2024, 45(7): 453-461. |
MENG Yikang, XU Ye, WANG Xinpeng, et al. Research on photovoltaic output combination prediction model based on similar day selection and PCA-LSTM[J]. Acta Energiae Solaris Sinica, 2024, 45(7): 453-461. | |
[21] | CUI W K, WAN C, SONG Y. Hybrid probabilistic forecasting of photovoltaic power generation considering weather conditions[C]//2022 IEEE Power & Energy Society General Meeting (PESGM). Denver, USA: IEEE, 2022: 1-5. |
[22] | 杨京渝, 罗隆福, 阳同光, 等. 基于气象特征挖掘和改进深度学习模型的风电功率短期预测[J]. 电力自动化设备, 2023, 43(3): 110-116. |
YANG Jingyu, LUO Longfu, YANG Tongguang, et al. Wind power short-term forecasting based on meteorological feature exploring and improved deep learning model[J]. Electric Power Automation Equipment, 2023, 43(3): 110-116. | |
[23] | LI G, WANG T F, HU F X, et al. The application of deep neural network algorithm considering multi-dimensional meteorological feature extraction in short-term wind speed prediction[C]// 2019 IEEE 3rd Information Technology, Networking,Electronic and Automation Control Conference (ITNEC).Chengdu,China:IEEE,2019: 2432-2437. |
[24] | 马伟, 乔颖, 谢丽蓉, 等. 考虑气象特征波动划分阈值的双目标短期风功率预测[J]. 高电压技术, 2022, 48(10): 4154-4162. |
MA Wei, QIAO Ying, XIE Lirong, et al. Short-term wind power prediction with dual targets considering the threshold of meteorological characteristic fluctuation partition[J]. High Voltage Engineering, 2022, 48(10): 4154-4162. | |
[25] | 王月, 申建建, 程春田, 等. 考虑电站集群与发电时变特性的风光出力描述方法[J]. 电网技术, 2023, 47(4): 1558-1572. |
WANG Yue, SHEN Jianjian, CHENG Chuntian, et al. Description of wind and solar power generation considering power plant clusters and time-varying power characteristics[J]. Power System Technology, 2023, 47(4): 1558-1572. | |
[26] | 郝洁. 基于多元特征的风电功率预测与源荷不确定性经济调度研究[D]. 兰州: 兰州理工大学, 2023. |
HAO Jie. Research on wind power forecasting and source-load uncertain economic dispatch based on multivariate characteristics[D]. Lanzhou: Lanzhou University of Technology, 2023. | |
[27] | 周俊煌. 基于配电网削峰效益评估的储能选址定容规划研究[D]. 广州: 华南理工大学, 2019. |
ZHOU Junhuang. Research on energy storage location and constant capacity planning based on peak shaving benefit evaluation of distribution network[D]. Guangzhou: South China University of Technology, 2019. | |
[28] | 田君豪, 张鸿宇, 王宇. 新型灵活性资源市场机制研究: 面向高比例可再生能源系统[J]. 北京理工大学学报(社会科学版), 2023, 25(3): 53-60. |
TIAN Junhao, ZHANG Hongyu, WANG Yu. Study of market mechanisms for new flexibility resources—Towards a high percentage renewable power system[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2023, 25(3): 53-60. | |
[29] | 朱琼锋, 李家腾, 乔骥, 等. 人工智能技术在新能源功率预测的应用及展望[J]. 中国电机工程学报, 2023, 43(8): 3027-3048. |
ZHU Qiongfeng, LI Jiateng, QIAO Ji, et al. Application and prospect of artificial intelligence technology in renewable energy forecasting[J]. Proceedings of the CSEE, 2023, 43(8): 3027-3048. | |
[30] | 陈志宝, 丁杰, 周海, 等. 地基云图结合径向基函数人工神经网络的光伏功率超短期预测模型[J]. 中国电机工程学报, 2015, 35(3): 561-567. |
CHEN Zhibao, DING Jie, ZHOU Hai, et al. A model of very short-term photovoltaic power forecasting based on ground-based cloud images and RBF neural network[J]. Proceedings of the CSEE, 2015, 35(3): 561-567. | |
[31] | 杨延勇, 孟祥剑, 高峰, 等. 一种基于双层人工神经网络的多时间尺度区域光伏功率预测方法[J]. 华北电力大学学报(自然科学版), 2021, 48(2): 55-63. |
YANG Yanyong, MENG Xiangjian, GAO Feng, et al. A multi-time scale regional PV power forecasting method based on double-layer artificial neural network[J]. Journal of North China Electric Power University (Natural Science Edition), 2021, 48(2): 55-63. | |
[32] | 常东峰, 南新元. 基于改进麻雀算法的深度信念网络短期光伏功率预测[J]. 现代电子技术, 2022, 45(17): 135-140. |
CHANG Dongfeng, NAN Xinyuan. Short-term PV power prediction of deep belief network based on improved sparrow search algorithm[J]. Modern Electronics Technique, 2022, 45(17): 135-140. | |
[33] | 李丹, 王奇, 杨保华, 等. 基于独立稀疏SAE的多风电场超短期功率预测[J]. 电力系统及其自动化学报, 2022, 34(2): 23-30. |
LI Dan, WANG Qi, YANG Baohua, et al. Ultra-short-term power prediction of multiple wind farms based on independent sparse SAE[J]. Proceedings of the CSU-EPSA, 2022, 34(2): 23-30. | |
[34] | SAMANTA S, PRATAMA M, SUNDARAM S. A novel spatio-temporal fuzzy inference system (SPATFIS) and its stability analysis[J]. Information Sciences, 2019, 505: 84-99. |
[35] |
金吉, 王斌, 喻敏, 等. 基于分形特征的自适应EEMD及其在风功率预测中的应用[J]. 太阳能学报, 2023, 44(5): 416-424.
doi: 10.19912/j.0254-0096.tynxb.2022-0039 |
JIN Ji, WANG Bin, YU Min, et al. Adaptive EEMD on basis of fraction characteristics and its application on wind power forecasting[J]. Acta Energiae Solaris Sinica, 2023, 44(5): 416-424.
doi: 10.19912/j.0254-0096.tynxb.2022-0039 |
|
[36] |
刘德澳, 董明刚, 叶威, 等. 基于图神经网络的非均匀风电场功率预测方法[J]. 太阳能学报, 2023, 44(11): 279-286.
doi: 10.19912/j.0254-0096.tynxb.2022-1106 |
LIU Deao, DONG Minggang, YE Wei, et al. Power prediction method of non-uniform wind farm layout based on graph neural network[J]. Acta Energiae Solaris Sinica, 2023, 44(11): 279-286.
doi: 10.19912/j.0254-0096.tynxb.2022-1106 |
|
[37] | LEI M, LUAN S Y, JIANGC W, et al. A review on the forecasting of wind speed and generated power[J]. Renewable and Sustainable Energy Reviews, 2009, 13(4): 915-920. |
[38] | NONNENMACHER L, KAUR A, COIMBRA C F. Verification of the SUNY direct normal irradiance model with ground measurements[J]. Solar Energy, 2014, 99: 246-258. |
[39] | DOLARA A, LEVA S, MANZOLINI G. Comparison of different physical models for PV power output prediction[J]. Solar Energy, 2015, 119: 83-99. |
[40] | 孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述[J]. 高电压技术, 2021, 47(4): 1129-1143. |
SUN Rongfu, ZHANG Tao, HE Qing, et al. Review on key technologies and applications in wind power forecasting[J]. High Voltage Engineering, 2021, 47(4): 1129-1143. | |
[41] | 周鑫, 李燕, 曾永辉, 等. 基于SARIMAX-SVR的光伏发电功率预测[J]. 电力系统及其自动化学报, 2024, 36(5): 1-8. |
ZHOU Xin, LI Yan, ZENG Yonghui, et al. Forecasting of photovoltaic power generation based on SARIMAX-SVR[J]. Proceedings of the CSU-EPSA, 2024, 36(5): 1-8. | |
[42] | 梁涛, 杨改文, 姜文, 等. 基于ARMA误差修正的LM-BP模型的风功率预测[J]. 高技术通讯, 2019, 29(5): 487-493. |
LIANG Tao, YANG Gaiwen, JIANG Wen, et al. Wind power forecasting of LM-BP model based on ARMA error correction[J]. Chinese High Technology Letters, 2019, 29(5): 487-493. | |
[43] | 赵滨滨, 王莹, 王彬, 等. 基于ARIMA时间序列的分布式光伏系统输出功率预测方法研究[J]. 可再生能源, 2019, 37(6): 820-823. |
ZHAO Binbin, WANG Ying, WANG Bin, et al. Photovoltaic power prediction in distribution network based on ARIMA model time series[J]. Renewable Energy Resources, 2019, 37(6): 820-823. | |
[44] |
仇琦, 杨兰, 丁旭, 等. 基于改进EMD-ARIMA的光伏发电系统短期功率预测[J]. 电力科学与工程, 2020, 36(8): 42-50.
doi: 1672-0792(2020)08-0042-09 |
QIU Qi, YANG Lan, DING Xu, et al. An improved short-term power prediction method of PV power generation system based on EMD-ARIMA model[J]. Electric Power Science and Engineering, 2020, 36(8): 42-50.
doi: 1672-0792(2020)08-0042-09 |
|
[45] | 王瑞, 高强, 逯静. 基于CEEMDAN-LSSVM-ARIMA模型的短期光伏功率预测[J]. 传感器与微系统, 2022, 41(5): 118-122. |
WANG Rui, GAO Qiang, LU Jing. Short-term photovoltaic power prediction based on CEEMDAN-LSSVM-ARIMA model[J]. Transducer and Microsystem Technologies, 2022, 41(5): 118-122. | |
[46] | PEARRE N S, SWAN L G. Statistical approach for improved wind speed forecasting for wind power production[J]. Sustainable Energy Technologies and Assessments, 2018, 27: 180-191. |
[47] | RAJITHA M, ADEL A, KIRAN B. A robust deep learning framework for short-term wind power forecast of a full-scale wind farm using atmospheric variables[J]. Energy(prepublish),2021:119759. |
[48] | 樊宇琦, 丁涛, 孙瑜歌, 等. 国内外促进可再生能源消纳的电力现货市场发展综述与思考[J]. 中国电机工程学报, 2021, 41(5): 1729-1752. |
FAN Yuqi, DING Tao, SUN Yuge, et al. Review and cogitation for worldwide spot market development to promote renewable energy accommodation[J]. Proceedings of the CSEE, 2021, 41(5): 1729-1752. | |
[49] | YIN W S, HAN Y T, ZHOU H, et al. A novel non-iterative correction method for short-term photovoltaic power forecasting[J]. Renewable Energy, 2020, 159: 23-32. |
[50] | ALAMGIR H M, CHAKRABORTTY RIPON K, SONDOSS E, et al. Very short-term forecasting of wind power generation using hybrid deep learning model[J]. Journal of Cleaner Production, 2021, 296: 126564. |
[51] | 常琛. 基于深度学习的风电功率超短期预测组合模型研究[D]. 兰州: 兰州交通大学, 2023. |
CHANG Chen. Research on ultra-short-term forecasting combination model of wind power based on deep learning[D]. Lanzhou: Lanzhou Jiatong University, 2023. | |
[52] | 董存, 王铮, 白捷予, 等. 光伏发电功率超短期预测方法综述[J]. 高电压技术, 2023, 49(7): 2938-2951. |
DONG Cun, WANG Zheng, BAI Jieyu, et al. Review of ultra-short-term forecasting methods for photovoltaic power generation[J]. High Voltage Engineering, 2023, 49(7): 2938-2951. | |
[53] | 杨鹏伟, 赵丽萍, 陈军法, 等. 基于相似时段匹配与Transformer网络建模的分布式光伏超短期功率预测方法[J]. 中国电力: 1-12. |
YANG Pengwei, ZHAO Liping, CHEN Junfa, et al. Ultra-short-term distributed photovoltaic power forecasting method based on similar period matching and Transformer network modeling[J]. China Electric Power: 1-12. | |
[54] | 徐钽, 谢开贵, 王宇, 等. 基于TCN-Wpsformer混合模型的超短期风电功率预测[J]. 电力自动化设备, 2024, 44(8): 54-61. |
XU Tan, XIE Kaigui, WANG Yu, et al. Ultra-short-term wind power forecasting based on TCN-Wpsformer hybrid model[J]. Electric Power Automation Equipment, 2024, 44(8): 54-61. | |
[55] | 李练兵, 高国强, 吴伟强, 等. 考虑特征重组与改进Transformer的风电功率短期日前预测方法[J]. 电网技术, 2024, 48(4): 1466-1480. |
LI Lianbing, GAO Guoqiang, WU Weiqiang, et al. Short-term day-ahead wind power prediction considering feature recombination and improved transformer[J]. Power System Technology, 2024, 48(4): 1466-1480. | |
[56] | 张越, 臧海祥, 程礼临, 等. 基于自适应时序表征和多级注意力的超短期风电功率预测[J]. 电力自动化设备, 2024, 44(2): 117-125. |
ZHANG Yue, ZANG Haixiang, CHENG Lilin, et al. Ultra-short-term wind power forecasting based on adaptive time series representation and multi-level attention[J]. Electric Power Automation Equipment, 2024, 44(2): 117-125. | |
[57] | 王永生, 李海龙, 关世杰, 等. 基于变换域分析和XGBoost算法的超短期风电功率预测模型[J]. 高电压技术, 2024, 50 (9): 3860-3870. |
WANG Yongsheng, LI Hailong, GUAN Shijie, et al. Ultra-short-term wind power forecasting model based on transform domain analysis and XGBoost algorithm[J]. High Voltage Engineering, 2024, 50 (9): 3860-3870. | |
[58] | 马志侠, 张林鍹, 巴音塔娜, 等. 基于自适应二次分解与CNN-BiLSTM的超短期风电功率预测[J]. 太阳能学报, 2024, 45(6): 429-435. |
MA Zhixia, ZHANG Linxuan, Bayintana, et al. Ultra-short-term wind power prediction based on adaptive quadratic mode decomposition and CNN-BiLSTM[J]. Acta Energiae Solaris Sinica, 2024, 45(6): 429-435. | |
[59] | 欧旭鹏, 唐云, 张凯, 等. 基于CEEMDAN-IDOA-BiLSTM的超短期风电功率预测[J]. 电网与清洁能源, 2023, 39(11): 142-150. |
OU Xupeng, TANG Yun, ZHANG Kai, et al. The ultra short term wind power prediction based on CEEMDAN-IDOA-BiLSTM[J]. Power System and Clean Energy, 2023, 39(11): 142-150. | |
[60] | 滕陈源, 丁逸超, 张有兵, 等. 基于VMD-Informer-BiLSTM模型的超短期光伏功率预测[J]. 高电压技术, 2023, 49(7): 2961-2971. |
TENG Chenyuan, DING Yichao, ZHANG Youbing, et al. Ultra-short-term photovoltaic power prediction based on VMD-informer-BiLSTM model[J]. High Voltage Engineering, 2023, 49(7): 2961-2971. | |
[61] | 李育强, 晁勤, 索南加乐. 基于线性回归算法光伏电站短期功率预报模型研究[J]. 可再生能源, 2013, 31(1): 25-28. |
LI Yuqiang, CHAO Qin, SUONAN Jiale. Research on photovoltaic power station short-term power forecast model based on the linear regression algorithm[J]. Renewable Energy Resources, 2013, 31(1): 25-28. | |
[62] |
焦业峰, 王艳, 纪志成. 基于BLP-ALO-SVM的风电功率短期预测方法[J]. 系统仿真学报, 2022, 34(12): 2535-2545.
doi: 10.16182/j.issn1004731x.joss.22-FZ0924 |
JIAO Yefeng, WANG Yan, JI Zhicheng. Short-term prediction method of wind power based on BLP-ALO-SVM[J]. Journal of System Simulation, 2022, 34(12): 2535-2545.
doi: 10.16182/j.issn1004731x.joss.22-FZ0924 |
|
[63] | SUN M C, FENG C, ZHANG J. Multi-distribution ensemble probabilistic wind power forecasting[J]. Renewable Energy, 2020, 148: 135-149. |
[64] | 彭小圣, 熊磊, 文劲宇, 等. 风电集群短期及超短期功率预测精度改进方法综述[J]. 中国电机工程学报, 2016, 36(23): 6315-6326, 6596. |
PENG Xiaosheng, XIONG Lei, WEN Jinyu, et al. A summary of the state of the art for short-term and ultra-short-term wind power prediction of regions[J]. Proceedings of the CSEE, 2016, 36(23): 6315-6326, 6596. | |
[65] | 郭韶昕, 陈祥, 周枫. 基于CEEMD-IDA-SVM的风电功率短期预测[J]. 上海电机学院学报, 2022, 25(6): 339-345. |
GUO Shaoxin, CHEN Xiang, ZHOU Feng. Short-term wind power prediction based on CEEMD-IDA-SVM[J]. Journal of Shanghai Dianji University, 2022, 25(6): 339-345. | |
[66] | 商立群, 黄辰浩, 侯亚东, 等. 采用特征优选和优化深层核极限学习机的短期风电功率预测[J]. 西安交通大学学报, 2023, 57(1): 66-77. |
SHANG Liqun, HUANG Chenhao, HOU Yadong, et al. Short-term wind power prediction by using the deep kernel extreme learning machine with well-selected and optimized features[J]. Journal of Xi'an Jiaotong University, 2023, 57(1): 66-77. | |
[67] | 王开艳, 杜浩东, 贾嵘, 等. 基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J]. 高电压技术, 2022, 48(11): 4372-4388. |
WANG Kaiyan, DU Haodong, JIA Rong, et al. Short-term interval probability prediction of photovoltaic power based on similar daily clustering and QR-CNN-BiLSTM model[J]. High Voltage Engineering, 2022, 48(11): 4372-4388. | |
[68] | 贾睿, 杨国华, 郑豪丰, 等. 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J]. 中国电力, 2022, 55(5): 47-56, 110. |
JIA Rui, YANG Guohua, ZHENG Haofeng, et al. Combined wind power prediction method based on CNN-LSTM & GRU with adaptive weights[J]. Electric Power, 2022, 55(5): 47-56, 110. | |
[69] | MELLIT A, MASSI P A, LUGHI V. Deep learning neural networks for short-term photovoltaic power forecasting[J]. Renewable Energy, 2021, 172: 276-288. |
[70] | 郭恒宽, 田建艳, 刘竖威, 等. 基于改进Sequence2Sequence架构的LSTM超短期可解释风电功率预测[J/OL]. 控制工程: 1-12(2024-01-23)[2024-08-01].https://doi.org/10.14107/j.cnki.kzgc.20230921.21.1476.TP.20240122.1355.004. |
GUO Hengkuan, TIAN Jianyan, LIU Shuwei, et al. Ultra-short-term interpretable wind power forecasting based on an improved Sequence2Sequence architecture[J]. Control Engineering:1-12(2024-01-23)[2024-08-01].https://doi.org/10.14107/j.cnki.kzgc.20230921.21.1476.TP.20240122.1355.004. | |
[71] |
王俊杰, 毕利, 张凯, 等. 基于多特征融合和XGBoost-LightGBM-ConvLSTM的短期光伏发电量预测[J]. 太阳能学报, 2023, 44(7): 168-174.
doi: 10.19912/j.0254-0096.tynxb.2022-0458 |
WANG Junjie, BI Li, ZHANG Kai, et al. Short-term photovoltaic power generation prediction based on multi-feature fusion and XGBoost-Lightgbm-ConvLSTM[J]. Acta Energiae Solaris Sinica, 2023, 44(7): 168-174.
doi: 10.19912/j.0254-0096.tynxb.2022-0458 |
|
[72] | WU B, WANG L, ZENG Y R. Interpretable wind speed prediction with multivariate time series and temporal fusion transformers[J]. Energy, 2022, 252: 123990. |
[73] | 吴慧军, 郭超雨, 苏承国, 等. 基于EEMD-GRU-MC的短期风功率组合预测方法[J]. 南方电网技术, 2023, 17(2): 66-73. |
WU Huijun, GUO Chaoyu, SU Chengguo, et al. Combined prediction method for short-term wind power based on EEMD-GRU-MC[J]. Southern Power System Technology, 2023, 17(2): 66-73. | |
[74] | 李争, 徐若思, 曹欣, 等. 基于小波变换和IAGA-BP神经网络的光伏功率短期预测方法[J]. 可再生能源, 2023, 41(7): 883-890. |
LI Zheng, XU Ruosi, CAO Xin, et al. Short-term prediction method of photovoltaic power based on wavelet transform and IAGA-BP neural network[J]. Renewable Energy Resources, 2023, 41(7): 883-890. | |
[75] | OVEIS A, MOHAMED L, MEHDI B, et al. Improved EMD-based complex prediction model for wind power forecasting[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 1. |
[76] | 秦光宇. 考虑共享储能的综合能源系统优化调度及博弈策略研究[D]. 北京: 华北电力大学, 2023. |
QIN Guangyu. Research on optimal scheduling and game strategy of integrated energy system considering shared energy storage[D]. Beijing: North China Electric Power University, 2023. | |
[77] | 李灯熬, 白晓东, 夏鸿伟, 等. 基于STL-Former的中短期光伏功率预测[J]. 热能动力工程, 2024, 39(4): 140-146, 153. |
LI Dengao, BAI Xiaodong, XIA Hongwei, et al. Short-and medium-term photovoltaic power prediction based on STL-former[J]. Journal of Engineering for Thermal Energy and Power, 2024, 39(4): 140-146, 153. | |
[78] | AHMAD T, ZHANG D D, HUANG C. Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications[J]. Energy, 2021, 231: 120911. |
[79] | 郝小会, 杨正军, 郝延, 等. 基于改进GM-ARMA组合模型的风电功率中长期预测方法[J]. 电工技术, 2021(7): 11-13, 16. |
HAO Xiaohui, YANG Zhengjun, HAO Yan, et al. A medium and long term wind power prediction method based on improved GM-ARMA combination model[J]. Electric Engineering, 2021(7): 11-13, 16. | |
[80] | QIAN W Y, SUI A D. A novel structural adaptive discrete grey prediction model and its application in forecasting renewable energy generation[J]. Expert Systems with Applications, 2021, 186: 115761. |
[81] | DING S, LI R J, TAO Z. A novel adaptive discrete grey model with time-varying parameters for long-term photovoltaic power generation forecasting[J]. Energy Conversion and Management, 2021, 227: 113644. |
[82] | 任鑫, 王一妹, 王华, 等. 基于改进卷积-门控网络及Informer的两类中长期风电功率预测方法[J/OL]. 现代电力: 1-9(2023-10-08)[2024-08-01]. https://doi.org/10.19725/j.cnki.1007-2322.2023.0159.11.3818.TM. 20230928.1316.002. |
REN Xin, WANG Yimei, WANG Hua, et al. Two types of medium- and long-term wind power forecasting methods based on improved convolutional-gated networks and Informer[J]. Modern Electric Power: 1-9 (2023-10-08)[2024-08-01]. https://doi.org/10.19725/j.cnki.1007-2322.2023.0159.11.3818.TM. 20230928.1316.002. | |
[83] | 刘大贵, 王维庆, 张慧娥, 等. 马尔科夫修正的组合模型在新疆风电中长期可用电量预测中的应用[J]. 电网技术, 2020, 44(9): 3290-3297. |
LIU Dagui, WANG Weiqing, ZHANG Huie, et al. Application of Markov modified combination model mid-long term available quantity of electricity forecasting in Xinjiang wind power[J]. Power System Technology, 2020, 44(9): 3290-3297. | |
[84] | AHMAD T, CHEN H X. Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment[J]. Energy, 2018, 160: 1008-1020. |
[85] | GUO X F, GAO Y, ZHENG D, et al. Study on short-term photovoltaic power prediction model based on the Stacking ensemble learning[J]. Energy Reports, 2020, 6: 1424-1431. |
[86] | 徐睿麟, 郑建勇, 梅飞, 等. 基于谱聚类和多元变分模态分解的风电机组功率预测[J]. 电网技术, 2024, 48(5): 2043-2053. |
XU Ruilin, ZHENG Jianyong, MEI Fei, et al. Power prediction of wind turbine units based on spectral clustering and multivariate variational mode decomposition[J]. Power System Technology, 2024, 48(5): 2043-2053. | |
[87] | ZHOU B W, MA X J, LUO Y H, et al. Wind power prediction based on LSTM networks and nonparametric kernel density estimation[J]. IEEE Access, 2019, 7: 165279-165292. |
[88] | 崔文康. 人工智能驱动的新能源发电功率非参数概率预测研究[D]. 杭州: 浙江大学, 2023. |
CUI Wenkang. Research on non-parametric probabilistic forecasting of new energy power generation driven by artificial intelligence[D]. Hangzhou: Zhejiang University, 2023. | |
[89] |
刘长良, 赵陆阳, 王梓齐, 等. 基于时空注意力-Seq2Seq模型的多风电机组多步风速预测算法[J]. 太阳能学报, 2023, 44(8): 420-429.
doi: 10.19912/j.0254-0096.tynxb.2022-0540 |
LIU Changliang, ZHAO Luyang, WANG Ziqi, et al. Multi-step wind speed prediction algorithm of multiple wind turbines based on spatial-temporal attention-Seq2Seq model[J]. Acta Energiae Solaris Sinica, 2023, 44(8): 420-429.
doi: 10.19912/j.0254-0096.tynxb.2022-0540 |
|
[90] | FANG R, WANG Y, SHANG R, et al. The ultra-short term power prediction of wind farm considering operational condition of wind turbines[J]. International Journal of Hydrogen Energy, 2016, 41(35): 15733-15739. |
[91] | 陶思钰, 江福庆. 集群化发展模式下风电场预测、规划及控制关键技术综述[J]. 电力工程技术, 2024, 43(1): 86-99. |
TAO Siyu, JIANG Fuqing. Review of the key technologies of wind farm cluster prediction, planning and control[J]. Electric Power Engineering Technology, 2024, 43(1):86-99. | |
[92] | FENG S, ZHANG G, WAN D, et al. On the treatment of hydroelastic slamming by coupling boundary element method and modal superposition method[J]. Applied Ocean Research, 2021, 112: 102595. |
[93] |
黄秋红, 王霄, 杨靖, 等. 基于集群划分的区域短期风电功率预测模型[J]. 电力科学与工程, 2022, 38(12): 8-17.
doi: 10.3969/j.ISSN.1672-0792.2022.12.002 |
HUANG Qiuhong, WANG Xiao, YANG Jing, et al. A model for predicting regional short-term wind power based on cluster division[J]. Electric Power Science and Engineering, 2022, 38(12): 8-17.
doi: 10.3969/j.ISSN.1672-0792.2022.12.002 |
|
[94] | 卢俊杰, 蔡涛, 郎建勋, 等. 基于集群划分的光伏电站集群发电功率短期预测方法[J]. 高电压技术, 2022, 48(5): 1943-1951. |
LU Junjie, CAI Tao, LANG Jianxun, et al. Short-term power output forecasting of clustered photovoltaic solar plants based on cluster partition[J]. High Voltage Engineering, 2022, 48(5): 1943-1951. | |
[95] | 牛甲俊, 张薇, 许达明. 基于FCM和ITransformer-TCN的短期风电集群功率预测[J]. 东北电力大学学报, 2024, 44(1): 9-16. |
NIU Jiajun, ZHANG Wei, XU Daming. Short-term power prediction of wind power cluster based on FCM and ITransformer-TCN[J]. Journal of Northeast Electric Power University, 2024, 44(1): 9-16. | |
[96] | MA Y, HUANG J. Asymptotic error expansions and splitting extrapolation algorithm for two classes of two-dimensional Cauchy principal-value integrals[J]. Applied Mathematics and Computation, 2019, 357: 107-118. |
[97] | 陈冠初, 阿力马斯别克·沙肯别克, 焦春雷, 等. 基于集群划分和LightGBM-KDE的区域风电中期概率预测[J]. 电网与清洁能源, 2023, 39(11): 97-104, 110. |
CHEN Guanchu, ALIMASIBIEKE·Shakenbieke, JIAO Chunlei, et al. The medium-term probabilistic prediction of regional wind power based on cluster division and LightGBM-KDE[J]. Power System and Clean Energy, 2023, 39(11): 97-104, 110. | |
[98] | 赵永宁, 李卓, 叶林, 等. 基于时空相关性的风电功率超短期自适应预测方法[J]. 电力系统保护与控制, 2023, 51(6): 94-105. |
ZHAO Yongning, LI Zhuo, YE Lin, et al. A very short-term adaptive wind power forecasting method based on spatio-temporal correlation[J]. Power System Protection and Control, 2023, 51(6): 94-105. | |
[99] | 杨子民, 彭小圣, 郎建勋, 等. 基于集群动态划分与BLSTM深度学习的风电集群短期功率预测[J]. 高电压技术, 2021, 47(4): 1195-1203. |
YANG Zimin, PENG Xiaosheng, LANG Jianxun, et al. Short-term wind power prediction based on dynamic cluster division and BLSTM deep learning method[J]. High Voltage Engineering, 2021, 47(4): 1195-1203. | |
[100] | YU G, LIU C, TANG B, et al. Short-term wind power prediction for regional wind farms based on spatial-temporal characteristic distribution[J]. Renewable Energy, 2022, 199: 599-612. |
[1] | 张冬冬, 李芳凝, 刘天皓. 新型电力系统负荷预测关键技术及多元场景应用[J]. 综合智慧能源, 2025, 47(3): 47-61. |
[2] | 刘斌, 孙周, 姜之未, 郭明阳, 曹灿. 数字化赋能交通能源融合:技术路径、应用场景与未来展望[J]. 综合智慧能源, 2025, 47(2): 1-12. |
[3] | 石鑫, 刘奇央, 高峰. 深度神经网络在新型能源系统中的应用及展望[J]. 综合智慧能源, 2025, 47(2): 88-101. |
[4] | 袁孝科, 沈石兰, 张茂松, 石晨旭, 杨凌霄. 基于可解释强化学习的智能虚拟电厂最优调度[J]. 综合智慧能源, 2025, 47(1): 1-9. |
[5] | 陈然璟, 陈祎璠, 曹越, 司风琪. 基于差压电流比混合模型的磨煤机变加载策略优化[J]. 综合智慧能源, 2024, 46(12): 10-16. |
[6] | 盛瑞祥, 张啸宇. 基于概率TCN-Transformer的短期光伏功率预测模型[J]. 综合智慧能源, 2024, 46(11): 10-18. |
[7] | 蔺家骏, 闫玮丹, 胡俊华, 郑一鸣, 邵先军, 郭炳延. 多模态知识图谱在电力运检中的应用与展望[J]. 综合智慧能源, 2024, 46(1): 65-74. |
[8] | 杨波, 李成雲, 吕浩轩, 周博文, 李广地, 谷鹏. 基于多STA-GLN集成模型的电力系统暂态稳定评估方法[J]. 综合智慧能源, 2023, 45(7): 48-60. |
[9] | 魏伟, 高赐威, 宋梦, 明昊. 基于HHO-SVM的电力线路故障检测分类系统[J]. 综合智慧能源, 2023, 45(3): 1-8. |
[10] | 彭占磊, 杨之乐, 杨文强, 李慷. 电化学储能参与电力系统规划运行方法综述[J]. 综合智慧能源, 2022, 44(6): 37-44. |
[11] | 陈甜甜, 高亚静, 卢占会. 基于双尺度度量的改进模糊均值曲线聚类方法研究[J]. 综合智慧能源, 2022, 44(4): 1-11. |
[12] | 闫新春, 曹欢, 华云鹏. 基于人工智能的锅炉受热面管壁温度预测[J]. 综合智慧能源, 2022, 44(3): 58-62. |
[13] | 侯鲁洋, 葛磊蛟, 王飚, 王宣元, 徐连明, 王莉. 面向新型产消者的综合能源系统和电力市场研究[J]. 综合智慧能源, 2022, 44(12): 40-48. |
[14] | 黄保乐, 李鹏, 邢政, 高波, 赵竟. 价值链重构下的发电企业综合能源服务平台建设路径研究[J]. 综合智慧能源, 2022, 44(12): 75-80. |
[15] | 杨冬梅, 何国鑫, 朱金大, 王琦, 耿健, 王俊, 李宁. 边缘计算在综合能源系统运行控制中的应用[J]. 综合智慧能源, 2022, 44(1): 49-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||