综合智慧能源 ›› 2025, Vol. 47 ›› Issue (3): 47-61.doi: 10.3969/j.issn.2097-0706.2025.03.005
张冬冬1a,1b,2(), 李芳凝1a,1b, 刘天皓1a,3,*(
)
收稿日期:
2024-08-16
修回日期:
2024-10-25
接受日期:
2024-12-02
出版日期:
2025-03-25
通讯作者:
*刘天皓(1990),男,高级工程师,博士,从事新能源发电及数据中心研究,thliu@eee.hku.hk。作者简介:
张冬冬(1990),男,副教授,博士,从事新型电力系统与能源互联网研究,dongdongzhang@gxu.edu.cn。
基金资助:
ZHANG Dongdong1a,1b,2(), LI Fangning1a,1b, LIU Tianhao1a,3,*(
)
Received:
2024-08-16
Revised:
2024-10-25
Accepted:
2024-12-02
Published:
2025-03-25
Supported by:
摘要:
为实现“双碳”目标,新型电力系统正向绿色化、智能化和多样化转型。负荷预测对保障新型电力系统安全、经济和可靠运行至关重要。尽管传统数理统计方法在规律性明显的负荷数据预测中表现良好,但在新型系统中,高比例可再生能源和随机性用户负荷使数理统计方法面临挑战。人工智能技术,尤其是机器学习和深度学习,因其在处理复杂数据和提取模式方面的优势,成为研究热点,有效提升了负荷预测的准确性和鲁棒性。在此背景下,回顾了基于数理统计原理的负荷预测方法并讨论了其局限性,总结人工智能技术在负荷预测中的应用进展,分析传统机器学习、深度学习及组合预测模型的应用特点。针对区域系统级负荷预测、高比例可再生能源场景下的净负荷预测、多类异质能源协同互补场景下的综合能源系统负荷预测、建筑负荷预测以及电动汽车负荷预测这5类场景下的负荷预测技术难点和关键技术应用进行归纳和总结,对未来负荷预测技术的发展方向进行了展望。
中图分类号:
张冬冬, 李芳凝, 刘天皓. 新型电力系统负荷预测关键技术及多元场景应用[J]. 综合智慧能源, 2025, 47(3): 47-61.
ZHANG Dongdong, LI Fangning, LIU Tianhao. Key technologies for load forecasting in new power systems and their applications in diverse scenario[J]. Integrated Intelligent Energy, 2025, 47(3): 47-61.
表1
传统机器学习方法对比
分类 | 优点 | 缺点 | 常用方法 | 应用 |
---|---|---|---|---|
监督 学习 | 预测精度高、收敛速度快、评估方便 | 对标注数据依赖强、泛化能力受限 | K-近邻算法 | 数据筛选[ |
随机森林 | 特征提取[ | |||
SVM | 负荷预测建模[ | |||
无监督学习 | 无需标注数据、可以发现数据内在结构、适用性广 | 解释性差、模型评估困难、不确定性高 | K-means 聚类 | 数据聚类、相关性分析[ |
PCA | 数据降维[ | |||
SOM | 数据降维[ | |||
半监督学习 | 标注数据需求少、有效利用无标签数据 | 模型复杂度高、评估不易、易受噪声干扰 | 自训练生成伪标签 | 将无标签数据转化为有标签数据,增加训练数据的多样性和数量[ |
强化 学习 | 适合动态环境、长期策略优化、自适应性强 | 探索成本高、计算资源需求大、模型不稳定性高 | Q-learning | 预测模型动态选择[ |
表2
各场景负荷预测难点及关键预测技术应用
场景 | 预测难点 | 关键技术 |
---|---|---|
区域系统级负荷预测 | 分布式能源接入、天气、重大节日等随机影响因素 | 基于机器学习或深度学习的组合预测方法、相关性分析 |
大型区域系统级负荷长时间尺度的预测精度衰减 | 基于数理统计的预测方法、在线学习、机器学习 | |
小型配电区域级受局部用户行为短期波动性大 | 基于深度学习的组合预测方法 | |
净负荷预测 | 净负荷本身数据缺失的情况 | 按成分预测方法,针对负荷和可再生能源应用不同的机器学习或深度学习方法建立预测模型 |
净负荷数据内部中的可再生能源发电和负荷用电情况的不明晰 | 基于深度学习的整体预测方法、利用数据分解方法进行数据成分分解预测并重构的方法 | |
综合能源系统负荷 预测 | 不同类型能源负荷间的相互影响,多能源系统的负荷特性难协调 | 多任务学习框架 |
多种可再生能源的协同效应和互补性带来了复杂的非线性特性 | 基于深度学习的组合预测方法 | |
建筑负荷预测 | 单一建筑用电随机性大、用电规律个性化、数据稀缺 | 通过深度学习分析非线性、通过联邦学习或迁移学习解决数据匮乏问题 |
建筑用户集群内各建筑用电习惯差异大、特征分散 | 利用机器学习进行聚类、特征挖掘,再结合深度学习处理大规模数据的能力进行预测 | |
电动汽车负荷预测 | 插充式电动汽车充电负荷需要同时考虑车辆的充电时间、位置分布以及充电功率的变化 | 基于深度学习的组合方法、图神经网络、线上线下联合学习 |
换电式电动汽车的负荷预测需考虑换电站的电池库存管理及车辆的换电需求波动,受换电服务频率和车队运营模式的影响大 | 马尔科夫链、出行及电池状态的物理建模与机器学习的聚类方法相结合 |
[1] |
李政, 李伟起, 张忠伟, 等. “双碳” 目标下我国电力系统灵活性资源发展策略研究[J]. 中国工程科学, 2024, 26(4):108-120.
doi: 10.15302/J-SSCAE-2024.04.018 |
LI Zheng, LI Weiqi, ZHANG Zhongwei, et al. Development strategy of flexible resources in China's power system under the carbon peaking and carbon neutrality goals[J]. Strategic Study of CAE, 2024, 26(4): 108-120.
doi: 10.15302/J-SSCAE-2024.04.018 |
|
[2] | 孔祥玉, 马玉莹, 艾芊, 等. 新型电力系统多元用户的用电特征建模与用电负荷预测综述[J]. 电力系统自动化, 2023, 47(13): 2-17. |
KONG Xiangyu, MA Yuying, AI Qian, et al. Review on electricity consumption characteristic modeling and load forecasting for diverse users in new power system[J]. Automation of Electric Power Systems, 2023, 47(13): 2-17. | |
[3] |
金立, 张力, 唐杨, 等. 考虑温湿指数与耦合特征的综合能源负荷短期预测[J]. 综合智慧能源, 2023, 45(7): 70-77.
doi: 10.3969/j.issn.2097-0706.2023.07.008 |
JIN Li, ZHANG Li, TANG Yang, et al. Short-term prediction on integrated energy loads considering temperature-humidity index and coupling characteristics[J]. Integrated Intelligent Energy, 2023, 45(7): 70-77.
doi: 10.3969/j.issn.2097-0706.2023.07.008 |
|
[4] | WANG Y, CHEN Q X, HONG T, et al. Review of smart meter data analytics:Applications,methodologies,and challenges[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 3125-3148. |
[5] | CHENG L F, YU T. A new generation of AI: A review and perspective on machine learning technologies applied to smart energy and electric power systems[J]. International Journal of Energy Research, 2019, 43(6): 1928-1973. |
[6] | GIAMARELOS N, PAPADIMITRAKIS M, STOGIANNOS M, et al. A machine learning model ensemble for mixed power load forecasting across multiple time horizons[J]. Sensors, 2023, 23(12): 5436. |
[7] | EREN Y, KÜÇÜKDEMIRAL İ. A comprehensive review on deep learning approaches for short-term load forecasting[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 114031. |
[8] | 方娜, 陈浩, 邓心, 等. 基于VMD-ARIMA-DBN的短期电力负荷预测[J]. 电力系统及其自动化学报, 2023, 35(6): 59-65. |
FANG Na, CHEN Hao, DENG Xin, et al. Short-term power load forecasting based on VMD-ARIMA-DBN[J]. Proceedings of the CSU-EPSA, 2023, 35(6): 59-65. | |
[9] | 于军琪, 聂己开, 赵安军, 等. 基于特征挖掘的ARIMA-GRU短期电力负荷预测[J]. 电力系统及其自动化学报, 2022, 34(3): 91-99. |
YU Junqi, NIE Jikai, ZHAO Anjun, et al. ARIMA-GRU short-term power load forecasting based on feature mining[J]. Proceedings of the CSU-EPSA, 2022, 34(3): 91-99. | |
[10] | 李震, 张思, 任娴婷, 等. 基于数据驱动的线性聚类ARIMA长期电力负荷预测[J]. 科学技术与工程, 2020, 20(16): 6497-6504. |
LI Zhen, ZHANG Si, REN Xianting, et al. Long-term power load forecasting based on data-driven linear clustering ARIMA[J]. Science Technology and Engineering, 2020, 20(16): 6497-6504. | |
[11] | 彭鹏, 彭佳红. 基于多元线性回归模型的电力负荷预测研究[J]. 中国安全生产科学技术, 2011, 7(9):158-161. |
PENG Peng, PENG Jiahong. Research on the prediction of power load based on multiple linear regression model[J]. Journal of Safety Science and Technology, 2011, 7(9): 158-161. | |
[12] | 邓带雨, 李坚, 张真源, 等. 基于EEMD-GRU-MLR的短期电力负荷预测[J]. 电网技术, 2020, 44(2): 593-602. |
DENG Daiyu, LI Jian, ZHANG Zhenyuan, et al. Short-term electric load forecasting based on EEMD-GRU-MLR[J]. Power System Technology, 2020, 44(2): 593-602. | |
[13] | 魏骁, 申少辉, 徐俊. 浙江省中长期电力负荷需求预测分析[J]. 自动化技术与应用, 2023, 42(2): 26-29, 40. |
WEI Xiao, SHEN Shaohui, XU Jun. Analysis of medium and long term load demand forecasting in Zhejiang Province[J]. Techniques of Automation and Applications, 2023, 42(2): 26-29, 40. | |
[14] | ZHAO H R, GUO S. An optimized grey model for annual power load forecasting[J]. Energy, 2016, 107: 272-286. |
[15] | 王洁, 曲晓黎, 尤琦, 等. 夏季日峰降温电力负荷预测灰色模型及其应用[J]. 气象, 2024, 50(1): 95-102. |
WANG Jie, QU Xiaoli, YOU Qi, et al. A grey model for power load prediction of summer peak cooling and its application[J]. Meteorological Monthly, 2024, 50(1): 95-102. | |
[16] | YIN C, MAO S H. Fractional multivariate grey bernoulli model combined with improved grey wolf algorithm: application in short-term power load forecasting[J]. Energy, 2023, 269: 126844. |
[17] |
陈逸枞, 张大海, 李宇欣, 等. 基于DWT-MOSMA-SVM的多目标优化短期母线负荷预测[J]. 电力建设, 2023, 44(3): 49-55.
doi: 10.12204/j.issn.1000-7229.2023.03.005 |
CHEN Yicong, ZHANG Dahai, LI Yuxin, et al. Multi-objective optimization based on DWT-MOSMA-SVM for short-term bus load forecasting[J]. Electric Power Construction, 2023, 44(3): 49-55.
doi: 10.12204/j.issn.1000-7229.2023.03.005 |
|
[18] | ZHAO Z Y, ZHANG Y, YANG Y J, et al. Load forecasting via grey model-least squares support vector machine model and spatial-temporal distribution of electric consumption intensity[J]. Energy, 2022, 255: 124468. |
[19] | 葛亚明, 仇晨光, 谢丽荣, 等. 基于K-means聚类与LSTM模型的多能源耦合电力负荷预测[J/OL]. 现代电力,1-8(2024-01-09)[2024-10-20].https://doi.org/10.19725/j.cnki.1007-2322.2023.0110. |
GE Yaming, QIU Chenguang, XIE Lirong, et al. Research on multi-energy coupled power load prediction based on K-means clustering and LSTM model[J/OL]. Modern Electric Power, 1-8(2024-01-09)[2024-10-20].https://doi.org/10.19725/j.cnki.1007-2322.2023.0110. | |
[20] | 董雷, 陈振平, 韩富佳, 等. 基于图卷积神经网络与K-means聚类的居民用户集群短期负荷预测[J]. 电网技术, 2023, 47(10): 4291-4301. |
DONG Lei, CHEN Zhenping, HAN Fujia, et al. Short-term load forecasting of residential user groups based on graph convolutional neural network and K-means clustering[J]. Power System Technology, 2023, 47(10): 4291-4301. | |
[21] | 王艳松, 申晓阳, 李强, 等. 基于PCA-GRD-LWR模型的海上油田中长期最大电力负荷预测[J]. 中国石油大学学报(自然科学版), 2023, 47(2): 129-135. |
WANG Yansong, SHEN Xiaoyang, LI Qiang, et al. Forecasting of medium and long-term maximum power load for offshore oilfields based on PCA-GRD-LWR model[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(2): 129-135. | |
[22] | 朱卫涛, 邹文文, 贾钦, 等. 基于DWT-SOM-HFS的配电台区短期负荷预测研究与应用[J]. 智慧电力, 2023, 51(6): 78-85. |
ZHU Weitao, ZOU Wenwen, JIA Qin, et al. Research and application of short term load forecasting in distribution station area based on DWT-SOM-HFS[J]. Smart Power, 2023, 51(6): 78-85. | |
[23] | 闫威, 李南, 沈月秀, 等. 基于CNN-GAN与半监督回归的电动汽车充电负荷预测[J]. 浙江电力, 2023, 42(2): 83-89. |
YAN Wei, LI Nan, SHEN Yuexiu, et al. Electric vehicle charging load forecasting based on CNN-GAN and semi-supervised regression[J]. Zhejiang Electric Power, 2023, 42(2): 83-89. | |
[24] | JIN X Y, XIAO F, ZHANG C, et al. Semi-supervised learning based framework for urban level building electricity consumption prediction[J]. Applied Energy, 2022, 328: 120210. |
[25] | QIU X H, RU Y J, TAN X Y, et al. A k-nearest neighbor attentive deep autoregressive network for electricity consumption prediction[J]. International Journal of Machine Learning and Cybernetics, 2024, 15(4):1201-1212. |
[26] | 伍乙杰, 黄文灏, 赖仕达, 等. 基于随机森林和双向长短期记忆网络的超短期负荷预测研究[J]. 电气自动化, 2022, 44(5): 35-37, 40. |
WU Yijie, HUANG Wenhao, LAI Shida, et al. Research on ultra-short-term load forecasting based onRandom forest and bidirectional long-short-term memory network[J]. Electrical Automation, 2022, 44(5): 35-37, 40. | |
[27] | 胡兆龙, 胡俊建, 彭浩, 等. 基于深度随机森林算法的短期用户负荷预测: 以金华地区为例[J]. 电子科技大学学报, 2023, 52(3): 430-437. |
HU Zhaolong, HU Junjian, PENG Hao, et al. Short-term user load forecasting based on deep random forest: Take Jinhua City as an example[J]. Journal of University of Electronic Science and Technology of China, 2023, 52(3): 430-437. | |
[28] | 冉启武, 张宇航. 基于模态分解及GRU-XGBoost短期电力负荷预测[J]. 电网与清洁能源, 2024, 40(4):18-27,34. |
RAN Qiwu, ZHANG Yuhang. Short-term power load forecasting based on modal decomposition and GRU-XGBoost[J]. Power System and Clean Energy, 2024, 40(4): 18-27,34. | |
[29] | GE Q B, GUO C, JIANG H Y, et al. Industrial power load forecasting method based on reinforcement learning and PSO-LSSVM[J]. IEEE Transactions on Cybernetics, 2022, 52(2): 1112-1124. |
[30] | 于海东, 刘文彬, 文祥宇. 基于强化学习的电动出租车充电负荷预测[J]. 山东电力技术, 2022, 49(4): 7-14. |
YU Haidong, LIU Wenbin, WEN Xiangyu. Charging load forecast of electric taxis based on reinforcement learning[J]. Shandong Electric Power, 2022, 49(4): 7-14. | |
[31] | 王延峰, 曹育晗, 孙军伟. 基于多策略改进金豺算法优化LSTM的短期电力负荷预测[J]. 电力系统保护与控制, 2024, 52(14): 95-102. |
WANG Yanfeng, CAO Yuhan, SUN Junwei. Short-term power load forecasting based on multi-strategy improved golden jackal algorithm-optimized LSTM[J]. Power System Protection and Control, 2024, 52(14): 95-102. | |
[32] | 刘杰, 从兰美, 夏远洋, 等. 基于DBO-VMD和IWOA-BILSTM神经网络组合模型的短期电力负荷预测[J]. 电力系统保护与控制, 2024, 52(8): 123-133. |
LIU Jie, CONG Lanmei, XIA Yuanyang, et al. Short-term power load prediction based on DBO-VMD and an IWOA-BILSTM neural network combination model[J]. Power System Protection and Control, 2024, 52(8): 123-133. | |
[33] | SEKHAR C, DAHIYA R. Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand[J]. Energy, 2023, 268: 126660. |
[34] | 姚芳, 汤俊豪, 陈盛华, 等. 基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J]. 电力系统保护与控制, 2023, 51(16): 158-167. |
YAO Fang, TANG Junhao, CHEN Shenghua, et al. Charging load prediction method for electric vehicles based on an ISSA-CNN-GRU model[J]. Power System Protection and Control, 2023, 51(16): 158-167. | |
[35] | 沈赋, 刘思蕊, 徐潇源, 等. 基于多尺度特征提取的IES多元负荷短期联合预测[J]. 高电压技术, 2024, 50(7): 2918-2930. |
SHEN Fu, LIU Sirui, XU Xiaoyuan, et al. Multi-load short-term joint forecasting of integrated energy system based on multi-scale feature extraction[J]. High Voltage Engineering, 2024, 50(7): 2918-2930. | |
[36] | 易雅雯, 娄素华. 基于序列成分重组与时序自注意力机制改进TCN-BiLSTM的短期电力负荷预测[J/OL]. 电力系统及其自动化学报,1-11(2024-07-11)[2024-10-20].https://doi.org/10.19635/j.cnki.csu-epsa.001488. |
YI Yawen, LOU Suhua. Short-term power load forecasting based on sequence component recombination and temporal self-attention mechanism improved TCN-BiLSTM[J/OL]. Proceedings of the CSU-EPSA,1-11(2024-07-11)[2024-10-20].https://doi.org/10.19635/j.cnki.csu-epsa.001488. | |
[37] | WANG Y F, RUI L X, MA J H, et al. A short-term residential load forecasting scheme based on the multiple correlation-temporal graph neural networks[J]. Applied Soft Computing, 2023, 146: 110629. |
[38] | 孟衡, 张涛, 王金, 等. 基于多尺度时空图卷积网络与Transformer融合的多节点短期电力负荷预测方法[J]. 电网技术, 2024, 48(10): 4297-4311. |
MENG Heng, ZHANG Tao, WANG Jin, et al. Multi-node short-term power load forecasting method based on multi-scale spatiotemporal graph convolution network and transformer[J]. Power System Technology, 2024, 48(10): 4297-4311. | |
[39] | 徐永瑞, 左丰恺, 朱新山, 等. 改进GBDT算法的负荷预测研究[J]. 电力系统及其自动化学报, 2021, 33(8): 94-101. |
XU Yongrui, ZUO Fengkai, ZHU Xinshan, et al. Research on load forecasting based on improved GBDT algorithm[J]. Proceedings of the CSU-EPSA, 2021, 33(8): 94-101. | |
[40] | YANG Y, XING Q Y, WANG K, et al. A novel combined probabilistic load forecasting system integrating hybrid quantile regression and knee improved multi-objective optimization strategy[J]. Applied Energy, 2024, 356: 122341. |
[41] | SHI J, TEH J. Load forecasting for regional integrated energy system based on complementary ensemble empirical mode decomposition and multi-model fusion[J]. Applied Energy, 2024, 353: 122146. |
[42] | 冉启武, 石卓见, 刘阳, 等. 考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测[J/OL]. 电网技术,1-18(2024-06-28)[2024-10-20].https://doi.org/10.13335/j.1000-3673.pst.2024.0352. |
RAN Qiwu, SHI Zhuojian, LIU Yang, et al. Stacking ensemble for multi-energy load forecasting in integrated energy systems with consideration of optimized modal decomposition based on composite indices[J/OL]. Power System Technology,1-18(2024-06-28)[2024-10-20].https://doi.org/10.13335/j.1000-3673.pst.2024.0352. | |
[43] | BARMAN M, DEV CHOUDHURY N B. A similarity based hybrid GWO-SVM method of power system load forecasting for regional special event days in anomalous load situations in Assam, India[J]. Sustainable Cities and Society, 2020, 61: 102311. |
[44] | LIU R H, SHI J F, SUN G P, et al. A Short-term net load hybrid forecasting method based on VW-KA and QR-CNN-GRU[J]. Electric Power Systems Research, 2024, 232: 110384. |
[45] | 李楠, 姜涛, 隋想, 等. 一种时频尺度下的多元短期电力负荷组合预测方法[J]. 电力系统保护与控制, 2024, 52(13): 47-58. |
LI Nan, JIANG Tao, SUI Xiang, et al. A multi-component short-term power load combination forecasting method on a time-frequency scale[J]. Power System Protection and Control, 2024, 52(13): 47-58. | |
[46] | 于越, 葛磊蛟, 金朝阳, 等. 考虑天气特征与多变量相关性的配电网短期负荷预测[J]. 电力系统保护与控制, 2024, 52(6): 131-141. |
YU Yue, GE Leijiao, JIN Zhaoyang, et al. Short-term load prediction method of distribution networks considering weather features and multivariate correlations[J]. Power System Protection and Control, 2024, 52(6): 131-141. | |
[47] | LI Y Y, HAN D, YAN Z. Long-term system load forecasting based on data-driven linear clustering method[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(2): 306-316. |
[48] | FAN J M, ZHONG M W, GUAN Y P, et al. An online long-term load forecasting method: Hierarchical highway network based on crisscross feature collaboration[J]. Energy, 2024, 299: 131459. |
[49] | TZIOLIS G, LOPEZ-LORENTE J, BAKA M I, et al. Direct short-term net load forecasting in renewable integrated microgrids using machine learning: A comparative assessment[J]. Sustainable Energy, Grids and Networks, 2024, 37: 101256. |
[50] | STRATMAN A, HONG T Q, YI M, et al. Net load forecasting with disaggregated behind-the-meter PV generation[J]. IEEE Transactions on Industry Applications, 2023, 59(5): 5341-5351. |
[51] |
KHODAYAR M, LIU G Y, WANG J H, et al. Spatiotemporal behind-the-meter load and PV power forecasting via deep graph dictionary learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(10): 4713-4727.
doi: 10.1109/TNNLS.2020.3042434 pmid: 33326390 |
[52] | ALIPOUR M, AGHAEI J, NOROUZI M, et al. A novel electrical net-load forecasting model based on deep neural networks and wavelet transform integration[J]. Energy, 2020, 205: 118106. |
[53] | BROWELL J, FASIOLO M. Probabilistic forecasting of regional net-load with conditional extremes and gridded NWP[J]. IEEE Transactions on Smart Grid, 2021, 12(6): 5011-5019. |
[54] | 戴浩男, 张辰灏, 甄钊, 等. 基于时空特征聚类和双层动态图卷积网络建模的短期净负荷预测[J]. 高电压技术, 2024, 50(9): 3914-3923. |
DAI Haonan, ZHANG Chenhao, ZHEN Zhao, et al. Short-term net load forecasting based on temporal-spatial feature clustering and two-layer dynamic graph convolutional network modeling[J]. High Voltage Engineering, 2024, 50(9): 3914-3923. | |
[55] | LIU J Z, MA L F, WANG Q H. Energy management method of integrated energy system based on collaborative optimization of distributed flexible resources[J]. Energy, 2023, 264: 125981. |
[56] | WANG C, WANG Y, DING Z T, et al. Probabilistic multi-energy load forecasting for integrated energy system based on Bayesian transformer network[J]. IEEE Transactions on Smart Grid, 2024, 15(2): 1495-1508. |
[57] |
徐聪, 胡永锋, 张爱平, 等. 基于特征筛选的综合能源系统多元负荷日前-日内预测[J]. 综合智慧能源, 2024, 46(3): 45-53.
doi: 10.3969/j.issn.2097-0706.2024.03.006 |
XU Cong, HU Yongfeng, ZHANG Aiping, et al. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening[J]. Integrated Intelligent Energy, 2024, 46(3): 45-53.
doi: 10.3969/j.issn.2097-0706.2024.03.006 |
|
[58] | 薛东, 段立强, 高统彤, 等. 考虑多重特征与不确定性度量的综合能源系统负荷预测研究[J]. 太阳能学报, 2024, 45(7): 379-388. |
XUE Dong, DUAN Liqiang, GAO Tongtong, et al. Study of integrated energy system load forecasting considering multiple characteristics and uncertainty measures[J]. Acta Energiae Solaris Sinica, 2024, 45(7): 379-388. | |
[59] |
孙健, 张云帆, 蔡潇龙, 等. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19.
doi: 10.3969/j.issn.2097-0706.2024.03.002 |
SUN Jian, ZHANG Yunfan, CAI Xiaolong, et al. Optimal scheduling of HVAC systems based on predicted loads[J]. Integrated Intelligent Energy, 2024, 46(3): 12-19.
doi: 10.3969/j.issn.2097-0706.2024.03.002 |
|
[60] | PRAMANIK A S, SEPASI S, NGUYEN T L, et al. An ensemble-based approach for short-term load forecasting for buildings with high proportion of renewable energy sources[J]. Energy and Buildings, 2024, 308: 113996. |
[61] | LIU H Z, ZHANG X, SHEN X W, et al. A hybrid federated learning framework with dynamic task allocation for multi-party distributed load prediction[J]. IEEE Transactions on Smart Grid, 2023, 14(3): 2460-2472. |
[62] | 杜玉吉, 钟崴, 钱辉金, 等. 计及区域建筑群生长特性的动态冷热负荷预测[J]. 浙江大学学报(工学版), 2024, 58(1): 140-149. |
DU Yuji, ZHONG Wei, QIAN Huijin, et al. Prediction of dynamic cooling and heating load considering growth characteristics of regional building[J]. Journal of Zhejiang University(Engineering Science), 2024, 58(1): 140-149. | |
[63] | DAB K, HENAO N, NAGARSHETH S, et al. Consensus-based time-series clustering approach to short-term load forecasting for residential electricity demand[J]. Energy and Buildings, 2023, 299: 113550. |
[64] | MANSOOR H, ALI S, KHAN I U, et al. Short-term load forecasting using AMI data[J]. EEE Internet of Things Journal, 2023, 10(24): 22040-22050. |
[65] | 闫秀英, 门琪, 吴晓雪. 跨建筑短期负荷预测的深度迁移学习方法[J/OL]. 电力系统及其自动化学报,1-10(2024-06-29)[2024-10-20].https://doi.org/10.19635/j.cnki.csu-epsa.001483. |
YAN Xiuying, MEN Qi, WU Xiaoxue. A deep transfer learning method for short-term load forecasting across buildings[J/OL]. Proceedings of the CSU-EPSA,1-10(2024-06-29)[2024-10-20].https://doi.org/10.19635/j.cnki.csu-epsa.001483. | |
[66] | QIN D L, WANG C X, WEN Q S, et al. Personalized federated DARTS for electricity load forecasting of individual buildings[J]. IEEE Transactions on Smart Grid, 2023, 14(6): 4888-4901. |
[67] | KAKKAR R, AGRAWAL S, TANWAR S. A systematic survey on demand response management schemes for electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2024, 203: 114748. |
[68] | 刘奕舟, 李振华, 魏伟, 等. 基于LSTM-GNN组合模型的电动汽车短期充电负荷预测[J/OL]. 电源学报,1-14(2024-07-29)[2024-10-20]. http://kns.cnki.net/kcms/detail/12.1420.tm.20240724.1728.016.html. |
LIU Yizhou, LI Zhenhua, WEI Wei, et al. Short-term charging load forecasting for electric vehicles based on combined LSTM-GNN models[J/OL]. Journal of Power Supply,1-14(2024-07-29)[2024-10-20]. http://kns.cnki.net/kcms/detail/12.1420.tm.20240724.1728.016.html | |
[69] | 李波, 王宁, 吕叶林, 等. 考虑环境因素的电动汽车充电站实时负荷预测模型[J]. 同济大学学报(自然科学版), 2024, 52(6): 962-969. |
LI Bo, WANG Ning, LÜ Yelin, et al. Real-time load prediction model of electric vehicle charging station considering environmental factors[J]. Journal of Tongji University (Natural Science), 2024, 52(6): 962-969. | |
[70] | 叶永盛, 徐燕龙, 李阳, 等. 基于相似周和模态分解的融合模型电动汽车负荷预测[J/OL]. 电网技术,1-12(2024-05-17)[2024-10-20].https://doi.org/10.13335/j.1000-3673.pst.2024.0225. |
YE Yongsheng, XU Yanlong, LI Yang, et al. Electric vehicle load forecasting with fusion model based on similar weeks and mode decomposition[J/OL]. Power System Technology,1-12(2024-05-17)[2024-10-20].https://doi.org/10.13335/j.1000-3673.pst.2024.0225. | |
[71] |
王康平, 黄曲粲, 张兴科, 等. 考虑调峰成本的大规模电动汽车分群调度策略[J]. 综合智慧能源, 2022, 44(11): 12-19.
doi: 10.3969/j.issn.2097-0706.2022.11.002 |
WANG Kangping, HUANG Qucan, ZHANG Xingke, et al. Strategy for large-scale electric vehicles cluster scheduling considering peak-shaving cost[J]. Integrated Intelligent Energy, 2022, 44(11): 12-19.
doi: 10.3969/j.issn.2097-0706.2022.11.002 |
|
[72] | DAI Q, CAI T, DUAN S X, et al. Stochastic modeling and forecasting of load demand for electric bus battery-swap station[J]. IEEE Transactions on Power Delivery, 2014, 29(4): 1909-1917. |
[73] |
范明康, 张怡, 康健, 等. 基于模糊聚类-马尔可夫链的换电站负荷预测模型[J]. 电力建设, 2023, 44(10): 63-71.
doi: 10.12204/j.issn.1000-7229.2023.10.007 |
FAN Mingkang, ZHANG Yi, KANG Jian, et al. Fuzzy clustering-Markov chain based load forecasting modeling for battery-swap stations[J]. Electric Power Construction, 2023, 44(10): 63-71.
doi: 10.12204/j.issn.1000-7229.2023.10.007 |
[1] | 张冬冬, 单琳珂, 刘天皓. 人工智能技术在风力与光伏发电数据挖掘及功率预测中的应用综述[J]. 综合智慧能源, 2025, 47(3): 32-46. |
[2] | 刘斌, 孙周, 姜之未, 郭明阳, 曹灿. 数字化赋能交通能源融合:技术路径、应用场景与未来展望[J]. 综合智慧能源, 2025, 47(2): 1-12. |
[3] | 杨澜倩, 郭锦敏, 田慧丽, 黄畅, 刘敏, 蔡阳. 基于CNN-LSTM-Self attention的园区负荷多尺度预测研究[J]. 综合智慧能源, 2025, 47(2): 79-87. |
[4] | 石鑫, 刘奇央, 高峰. 深度神经网络在新型能源系统中的应用及展望[J]. 综合智慧能源, 2025, 47(2): 88-101. |
[5] | 袁孝科, 沈石兰, 张茂松, 石晨旭, 杨凌霄. 基于可解释强化学习的智能虚拟电厂最优调度[J]. 综合智慧能源, 2025, 47(1): 1-9. |
[6] | 张华钦, 刘伟, 王慧, 李雷孝, 莎仁高娃. 基于深度强化学习的风电场功率多变量综合优化控制[J]. 综合智慧能源, 2025, 47(1): 18-25. |
[7] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[8] | 王泽宁, 李文中, 李东辉, 徐泰山, 俞俊. 基于软件定义的新型电力系统分层自治电力平衡模式研究[J]. 综合智慧能源, 2024, 46(7): 1-11. |
[9] | 何方波, 裴力耕, 郑睿, 范康健, 张晓曼, 李更丰. “源网荷储”协同助力陕西省新型电力系统建设[J]. 综合智慧能源, 2024, 46(7): 40-46. |
[10] | 郁海彬, 卢闻州, 唐亮, 张煜晨, 邹翔宇, 姜玉靓, 刘嘉宝. 考虑风险偏好的多主体虚拟电厂经济调度与收益分配策略[J]. 综合智慧能源, 2024, 46(6): 66-77. |
[11] | 朱卫卫, 朱清, 高文森, 刘财华, 王录泽, 刘增稷. 基于5G通信时延的配电网馈线自动化切换方法[J]. 综合智慧能源, 2024, 46(5): 1-11. |
[12] | 王亮, 邓松. 面向新型电力系统的异常数据检测方法[J]. 综合智慧能源, 2024, 46(5): 12-19. |
[13] | 缪月森, 夏红军, 黄宁洁, 李云, 周世杰. 基于Informer的负荷及光伏出力系数预测[J]. 综合智慧能源, 2024, 46(4): 60-67. |
[14] | 王永利, 王亚楠, 马子奔, 秦雨萌, 陈锡昌, 滕越. 面向区块链技术应用的能源交易系统效果评价[J]. 综合智慧能源, 2024, 46(4): 78-84. |
[15] | 孙健, 张云帆, 蔡潇龙, 刘鼎群. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||