综合智慧能源 ›› 2025, Vol. 47 ›› Issue (3): 32-46.doi: 10.3969/j.issn.2097-0706.2025.03.004

• 基于AI的新型电力系统调度 • 上一篇    下一篇

人工智能技术在风力与光伏发电数据挖掘及功率预测中的应用综述

张冬冬1a,1b,2(), 单琳珂1a,1b, 刘天皓1a,3,*()   

  1. 1.广西大学 a.电气工程学院;b.省部共建特色金属材料与组合结构全寿命安全国家重点实验室,南宁 530004
    2.内蒙古工业大学 新能源学院,内蒙古 鄂尔多斯 017010
    3.香港大学 电气与电子工程系,香港 999077
  • 收稿日期:2024-08-15 修回日期:2024-09-15 接受日期:2024-11-01 出版日期:2025-03-25
  • 通讯作者: *刘天皓(1990),男,高级工程师,博士,从事新能源发电及数据中心方面的研究,thliu@eee.hku.hk
  • 作者简介:张冬冬(1990),男,副教授,博士,从事新型电力系统与能源互联网方面的研究, dongdongzhang@gxu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52107083);广西科技重大专项(AA22068071)

Review on the application of artificial intelligence in data mining and wind and photovoltaic power forecasting

ZHANG Dongdong1a,1b,2(), SHAN Linke1a,1b, LIU Tianhao1a,3,*()   

  1. 1. a. School of Electrical Engineering; b. State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
    2. School of Renewable Energy,Inner Mongolia University of Technology,Ordos 017010,China
    3. Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong 999077, China
  • Received:2024-08-15 Revised:2024-09-15 Accepted:2024-11-01 Published:2025-03-25
  • Supported by:
    National Natural Science Foundation of China(52107083);Guangxi Science and Technology Major Project(AA22068071)

摘要:

随着全球可再生能源需求的持续增长,如何高效、智能地管理和预测可再生能源发电已成为能源领域的关键研究课题。探讨了人工智能技术在可再生能源发电中多维数据处理和智能预测方面的应用,并重点分析了其在处理复杂且具有高可变性的数据中的作用。从气象条件和时空特征的角度研究了多维特征挖掘技术在风能和太阳能发电数据处理中的作用。系统分析了在不同时空尺度和多场景下应用的智能预测技术,特别聚焦于机器学习和深度学习模型,这些模型因在处理非线性、高维数据时的优异表现而备受关注。最新研究成果的全面分析验证了这些技术在提升风能和太阳能发电预测准确性和效率方面的显著优势。此外,深入探讨了当前技术的优势与局限,并展望了未来的发展方向,尤其强调了提升智能预测模型鲁棒性、实时性及其在不同场景下适应能力的重要性。这些研究为进一步推动可再生能源领域的发展提供了理论依据和实践指导。

关键词: 人工智能, 可再生能源发电, 气象特征提取, 时空特征提取, 光伏发电预测, 风力发电预测, 数据挖掘

Abstract:

As global demand for renewable energy continues to surge, efficiently and intelligently managing and forecasting renewable energy generation has become a pivotal research objective in energy sector. Applications of artificial intelligence (AI) technologies in the multi-dimensional data processing and intelligent forecasting of renewable energy generation are explored, focusing on its role in handling complex and highly variable data. First,the role of multi-dimensional feature mining techniques in processing wind and solar energy generation data from the perspective of meteorological conditions and spatiotemporal features is studied. Subsequently, a systematic analysis on intelligent forecasting techniques applied across different spatiotemporal scales and scenarios is offered, with particular emphasis on its usage in machine learning and deep learning models. These models have gained significant attention for their outstanding performance in dealing with nonlinear and high-dimensional data. Thorough reviews on the latest research findings demonstrate the substantial benefits of these AI technologies in enhancing the accuracy and efficiency of wind and solar energy generation forecasts. Additionally, it delves into the strengths and limitations of existing technologies and their development directions, particularly emphasizing the importance of improving the robustness, real-time processing capabilities, and adaptability of intelligent forecasting models in various scenarios. This study provides theoretical insights and practical guidance for advancing the development of renewable energy.

Key words: AI, renewable energy generation, meteorological feature extraction, spatiotemporal feature extraction, photovoltaic power forecasting, wind power forecasting, data mining

中图分类号: