Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (8): 86-90.doi: 10.3969/j.issn.2097-0706.2022.08.009
• Cell System with Proton Conducting Electrolyte • Previous Articles Next Articles
YAN Xueling(), PAN Xiang, REN Keke, HUANG Rong, CHENG Jigui, HONG Tao*(
)
Received:
2022-06-17
Revised:
2022-07-23
Published:
2022-08-25
Contact:
HONG Tao
E-mail:2275426549@qq.com;taoh@hfut.edu.cn
YAN Xueling, PAN Xiang, REN Keke, HUANG Rong, CHENG Jigui, HONG Tao. Preparation and performance study of tubular protonic ceramic fuel cells[J]. Integrated Intelligent Energy, 2022, 44(8): 86-90.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.08.009
[1] |
OZGÜR A, HIRONORI N, TATSUMI K. Current and temperature distributions in-situ acquired by electrode-segmentation along a microtubular solid oxide fuel cell operating with syngas[J]. Journal of Power Sources, 2015, 293:1053-1061.
doi: 10.1016/j.jpowsour.2015.06.024 |
[2] |
LI T, WU Z, LI K. High-efficiency,nickel-ceramic composite anode current collector for micro-tubular solid oxide fuel cells[J]. Journal of Power Sources, 2015, 280:446-452.
doi: 10.1016/j.jpowsour.2015.01.130 |
[3] |
MARK W, THEO E, SAFFA R, et al. An experimental investigation of a micro-tubular SOFC membrane-separated liquid desiccant dehumidification and cooling trigeneration system[J]. Applied Thermal Engineering, 2017, 120:64-73.
doi: 10.1016/j.applthermaleng.2017.03.032 |
[4] | OUJEN H, AMAN D, ROBERT S. The development of current collection in micro-tubular solid oxide fuel cells——A review[J]. Applied Sciences-Base, 2021, 11(3):1077. |
[5] | MAHMUD S, MUCHTAR A, SOMALU M R. Challenges in fabricating planar solid oxide fuel cells:A review[J]. Renewable & Sustainable Energy Reviews, 2017, 72:105-116. |
[6] |
ZHANG X, JIN Y, LI D, et al. A review on recent advances in micro-tubular solid oxide fuel cells[J]. Journal of Power Sources, 2021, 506:230135.
doi: 10.1016/j.jpowsour.2021.230135 |
[7] |
CIMEN F, BERRE K, MUSTAFA I. Simulation of hydrogen and coal gas fueled flat-tubular solid oxide fuel cell(FT-SOFC)[J]. International Journal of Hydrogen Energy, 2022, 47(5):3429-3436.
doi: 10.1016/j.ijhydene.2021.07.231 |
[8] |
LESSING P A. A review of sealing technologies applicable to solid oxide electrolysis cells[J]. Journal of Materials Science, 2007, 42(10):3465-3476.
doi: 10.1007/s10853-006-0409-9 |
[9] | SINGH R N. Sealing technology for solid oxide fuel cells (SOFC)[J]. Applied Ceramic Technology, 2007, 4(2):134-144. |
[10] |
MAZLIND A, DZARFAN, HAMZAH F, et al. Development of high-performance anode/electrolyte/cathode micro-tubular solid oxide fuel cell via phase inversion-based coextrusion/cosintering technique[J]. Journal of Power Sources, 2020, 467:228345.
doi: 10.1016/j.jpowsour.2020.228345 |
[11] |
KONG W, ZHANG W, ZHANG S, et al. Residual stress analysis of a micro-tubular solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(36):16173-16180.
doi: 10.1016/j.ijhydene.2016.05.256 |
[12] | KENDALL M, MEADOWCROFT D, KENDALL K. Microtubular solid oxide fuel cells (mSOFCs)[J]. Solid Oxide Fuel Cells, 2013, 57(1):123-131. |
[13] |
DURANGO O, JONATHAN U, HERNAN V, et al. Ascendable method for the fabrication of micro-tubular solid oxide fuel cells by ram-extrusion technique[J]. Ceramics International, 2020, 46(3):2602-2611.
doi: 10.1016/j.ceramint.2019.08.252 |
[14] |
LAGUNA-BERCERO M A, MONZÓN H, LARREA A, et al. Improved stability of reversible solid oxide cells with a nickelate-based oxygen electrode[J]. Journal of Materials Chemistry A, 2016, 4(4): 1446-1453.
doi: 10.1039/C5TA08531D |
[15] |
SOYDAN M, AKDUMAN Y, ABDULLATIF D, et al. Evaluation of the sintering regime on the mechanical and physical properties of the NiO - YSZ anode support tubes[J]. International Journal of Hydrogen Energy, 2017, 42(43):26933-26942.
doi: 10.1016/j.ijhydene.2017.06.022 |
[16] |
REN C, ZHANG Y, XU Q, et al. Effect of non-solvent from the phase inversion method on the morphology and performance of the anode supported microtubular solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(11):6926-6933.
doi: 10.1016/j.ijhydene.2019.12.104 |
[17] |
CHEN C, LIU M, YANG L, et al. Anode-supported micro-tubular SOFCs fabricated by a phase-inversion and dip-coating process[J]. International Journal of Hydrogen Energy, 2011, 36(9):5604-5610.
doi: 10.1016/j.ijhydene.2011.02.016 |
[18] |
JAMIL M, OTHMAN, RAHMAN A, et al. Role of lithium oxide as a sintering aid for a CGO electrolyte fabricated via a phase inversion technique[J]. Rsc Advances, 2015, 5(72):58154-58162.
doi: 10.1039/C5RA09268J |
[19] |
YANG C, JIN C, CHEN F. Micro-tubular solid oxide fuel cells fabricated by phase-inversion method[J]. Electrochemistry Communications, 2010, 12(5):657-660.
doi: 10.1016/j.elecom.2010.02.024 |
[20] |
LIU T, WANG Y, REN C, et al. Novel light-weight,high-performance anode-supported microtubular solid oxide fuel cells with an active anode functional layer[J]. Journal of Power Sources, 2015, 293:852-858.
doi: 10.1016/j.jpowsour.2015.06.018 |
[21] |
CHERNG S, WU C, YU A, et al. Anode morphology and performance of micro-tubular solid oxide fuel cells made by aqueous electrophoretic deposition[J]. Journal of Power Sources, 2013, 232:353-356.
doi: 10.1016/j.jpowsour.2013.01.069 |
[22] |
YU A, WU C, YEH H, et al. Effects of layer thickness on the performance of micro-tubular solid oxide fuel cells made by sequential aqueous electrophoretic deposition[J]. International Journal of Hydrogen Energy, 2015, 40(40):14072-14076.
doi: 10.1016/j.ijhydene.2015.05.191 |
[23] |
LÓPEZ-ROBLEDO J, LAGUNA-BERCERO A, SILVA J, et al. Electrochemical performance of intermediate temperature micro-tubular solid oxide fuel cells using porous ceria barrier layers[J]. Ceramics International, 2015, 41(6):7651-7660.
doi: 10.1016/j.ceramint.2015.02.093 |
[24] |
LAGUNA-BBERCERO A, HANIFI R, ETSELL H, et al. Microtubular solid oxide fuel cells with lanthanum strontium manganite infiltrated cathodes[J]. International Journal of Hydrogen Energy, 2015, 40(15):5469-5474.
doi: 10.1016/j.ijhydene.2015.01.060 |
[25] |
MORALES M, LAGUNA-BERCERO A. Influence of anode functional layers on electrochemical performance and mechanical strength in microtubular solid oxide fuel cells fabricated by gel-casting[J]. ACS Applied Energy Materials, 2018, 1(5):2024-2031.
doi: 10.1021/acsaem.8b00115 |
[26] |
NADER H, DHRUBA P, DU Yanhai. Inert substrate-supported microtubular solid oxide fuel cells based on highly porous ceramic by low-temperature co-sintering[J]. Ceramics International, 2019, 45(1):579-587.
doi: 10.1016/j.ceramint.2018.09.211 |
[27] |
HEDAYAT N, PANTHI D, DU H. Fabrication of anode-supported microtubular solid oxide fuel cells by sequential dip-coating and reduced sintering steps[J]. Electrochimica Acta, 2017, 258:694-702.
doi: 10.1016/j.electacta.2017.11.115 |
[28] |
REN C, GAN Y, YANG C, et al. Fabrication and characterization of direct methane fueled thin film SOFCs supported by microchannel-structured microtubular substrates[J]. Acs Applied Energy Materials, 2020, 3(2):1831-1841.
doi: 10.1021/acsaem.9b02271 |
[29] |
MILCAREK J, DEBIASE P, JEONGMIN A. Investigation of startup,performance and cycling of a residential furnace integrated with micro-tubular flame-assisted fuel cells for micro-combined heat and power[J]. Energy, 2020, 196:117148.
doi: 10.1016/j.energy.2020.117148 |
[30] |
LIU Y, YANG L, LIU M, et al. Enhanced sinterability of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ by addition of nickel oxide[J]. Journal of Power Sources, 2011, 196(23):9980-9984.
doi: 10.1016/j.jpowsour.2011.08.047 |
[31] |
ZHONG Z, XU X, ZHANG Z, et al. Microwave sintering of high-performance BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BZCYYb) electrolytes for intermediate-temperature solid oxide fuel cells[J]International Journal of Hydrogen Energy, 2022, 47(60):25367-25377.
doi: 10.1016/j.ijhydene.2022.05.292 |
[1] | YANG Lei, WANG Rui, MA Lili, SUN Ning, LI Xuelian, CHEN Ting, WANG Shaorong, SHI Caixia. Research on Ca and Fe co-doped PrBaCo2O5+δ as a cathode material of solid oxide fuel cells [J]. Integrated Intelligent Energy, 2024, 46(7): 47-52. |
[2] | XU Yangsen, ZHANG Lei, BI Lei. Development and challenges of intermediate-temperature proton-conducting solid oxide fuel cells [J]. Integrated Intelligent Energy, 2022, 44(8): 68-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||