[1] |
张利生. 电力网电能损耗管理及降损技术[M]. 2版. 北京: 中国电力出版社, 2008.
|
[2] |
GAO Y Q, FOGGO B, YU N P. A physically inspired data-driven model for electricity theft detection with smart meter data[J]. IEEE Transactions on Industrial Informatics, 2019, 15(9): 5076-5088.
|
[3] |
RAMOS C C O, RODRIGUES D, DE SOUZA A N, et al. On the study of commercial losses in Brazil: A binary black hole algorithm for theft characterization[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 676-683.
|
[4] |
NAGI J, YAP K S, NAGI F, et al. NTL detection of electricity theft and abnormalities for large power consumers in TNB Malaysia[C]// Proceedings of 2010 IEEE Student Conference on Research and Development(SCOReD). IEEE, 2010: 202-206.
|
[5] |
LIU Y, NING P, REITER M K. False data injection attacks against state estimation in electric power grids[J]. ACM Transactions on Information and System Security, 2011, 14(1): 1-33.
|
[6] |
陈震宇, 关志涛. 基于ARIMA模型的智能电网虚假数据注入攻击检测[J]. 电力信息与通信技术, 2021, 19(11): 24-29.
|
|
CHEN Zhenyu, GUAN Zhitao. ARIMA model-based false data injection attack detection in smart grid[J]. Electric Power Information and Communication Technology, 2021, 19(11): 24-29.
|
[7] |
陈冰, 唐永旺. 基于Bi-GRU和自注意力的智能电网虚假数据注入攻击检测[J]. 计算机应用与软件, 2021, 38(7): 339-344, 349.
|
|
CHEN Bing, TANG Yongwang. False data injection attacks detection in smart grid based on Bi-GRU and self-attention[J]. Computer Applications and Software, 2021, 38(7): 339-344, 349.
|
[8] |
黄冬梅, 王一帆, 胡安铎, 等. 融合无监督和有监督学习的虚假数据注入攻击检测[J]. 电力工程技术, 2024, 43(2): 134-141.
|
|
HUANG Dongmei, WANG Yifan, HU Anduo, et al. Detection method of false data injection attack based on unsupervised and supervised learning[J]. Electric Power Engineering Technology, 2024, 43(2): 134-141.
|
[9] |
胡聪, 洪德华, 张翠翠, 等. 一种基于特征映射与深度学习的虚假数据注入检测方法[J]. 现代电力, 2023, 40(1): 125-132.
|
|
HU Cong, HONG Dehua, ZHANG Cuicui, et al. A method to detect false data injection based on feature mapping and deep learning[J]. Modern Electric Power, 2023, 40(1): 125-132.
|
[10] |
陈冰, 唐永旺. 基于Transformer编码器的智能电网虚假数据注入攻击检测[J]. 计算机应用与软件, 2022, 39(7): 336-342.
|
|
CHEN Bing, TANG Yongwang. False data injection attacks detecting based on transformer encoder in smart grid[J]. Computer Applications and Software, 2022, 39(7): 336-342.
|
[11] |
赵峰, 李妞妞. 基于VAE-GWO-LightGBM的信用卡欺诈检测方法[J]. 东北师大学报(自然科学版), 2023, 55(4): 77-84.
|
|
ZHAO Feng, LI Niuniu. Credit card fraud detection method based on VAE-GWO-LightGBM[J]. Journal of Northeast Normal University(Natural Science Edition), 2023, 55(4): 77-84.
|
[12] |
王鑫, 廖彬, 李敏, 等. 融合LightGBM与SHAP的糖尿病预测及其特征分析方法[J]. 小型微型计算机系统, 2022, 43(9): 1877-1885.
|
|
WANG Xin, LIAO Bin, LI Min, et al. Combination of LightGBM and SHAP for diabetes prediction and feature analysis[J]. Journal of Chinese Computer Systems, 2022, 43(9): 1877-1885.
|
[13] |
王懿泽, 孙吉利, 闫成杰, 等. 基于超像素与LightGBM的极化SAR图像地物分类[J]. 中国科学院大学学报, 2023, 40(5): 658-669.
|
|
WANG Yize, SUN Jili, YAN Chengjie, et al. Polarimetric SAR image terrain classification based on superpixel and LightGBM[J]. Journal of University of Chinese Academy of Sciences, 2023, 40(5): 658-669.
|
[14] |
肖宏磊, 留毅, 夏红军, 等. 基于PCA与SSA-LightGBM的油浸式变压器故障诊断方法[J]. 综合智慧能源, 2023, 45(3): 9-16.
doi: 10.3969/j.issn.2097-0706.2023.03.002
|
|
XIAO Honglei, LIU Yi, XIA Hongjun, et al. Oil-immersed transformer fault diagnosis method based on PCA and SSA-LightGBM[J]. Integrated Intelligent Energy, 2023, 45(3): 9-16.
doi: 10.3969/j.issn.2097-0706.2023.03.002
|
[15] |
秦宇宸. 大数据技术在反窃电中的应用[J]. 光源与照明, 2022(7):195-197.
|
|
QIN Yuchen. The application of big data technology in the field of anti-electricity stealing—Taking a line with high line loss rate as an example[J]. Lamps & Lighting, 2022(7):195-197.
|
[16] |
马晓杰, 程晓荣. 智能电网中的网络攻击检测机制的研究[J]. 网络安全技术与应用, 2020(6):28-30.
|
|
MA Xiaojie, CHENG Xiaorong. Research on network attack detection mechanism in smart grid[J]. Network Security Technology and Application, 2020(6):28-30.
|
[17] |
李惠军, 陆建强, 周霞, 等. 面向智慧园区系统的网络攻击关联分析与防护策略研究[J]. 综合智慧能源, 2022, 44(7): 1-9.
doi: 10.3969/j.issn.2097-0706.2022.07.001
|
|
LI Huijun, LU Jianqiang, ZHOU Xia, et al. Network attack association analysis and attack protection strategy for smart park systems[J]. Integrated Intelligent Energy, 2022, 44(7): 1-9.
doi: 10.3969/j.issn.2097-0706.2022.07.001
|
[18] |
鲁杰, 杨超, 杜刃刃, 等. 电力CPS中的虚假数据注入攻击[J]. 智能计算机与应用, 2022, 12(6): 121-126.
|
|
LU Jie, YANG Chao, DU Renren, et al. False data injection attack in power CPS[J]. Intelligent Computer and Applications, 2022, 12(6): 121-126.
|
[19] |
ZANETTI M, JAMHOUR E, PELLENZ M, et al. A tunable fraud detection system for advanced metering infrastructure using short-lived patterns[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 830-840.
|
[20] |
ELAHE M F, JIN M, ZENG P. Knowledge-based systematic feature extraction for identifying households with plug-in electric vehicles[J]. IEEE Transactions on Smart Grid, 2022, 13(3): 2259-2268.
|
[21] |
WANG Y, BENNANI I L, LIU X F, et al. Electricity consumer characteristics identification: A federated learning approach[J]. IEEE Transactions on Smart Grid, 2021, 12(4): 3637-3647.
|
[22] |
石洪波, 陈雨文, 陈鑫. SMOTE过采样及其改进算法研究综述[J]. 智能系统学报, 2019, 14(6): 1073-1083.
|
|
SHI Hongbo, CHEN Yuwen, CHEN Xin. Summary of research on SMOTE oversampling and its improved algorithms[J]. CAAI Transactions on Intelligent Systems, 2019, 14(6): 1073-1083.
|
[23] |
汪李忠, 池建飞, 丁叶强, 等. 基于NNTR-SMOTE与GA-XGBoost的变压器故障诊断方法研究[J]. 综合智慧能源, 2024, 46(1): 84-93.
doi: 10.3969/j.issn.2097-0706.2024.01.010
|
|
WANG Lizhong, CHI Jianfei, DING Yeqiang, et al. Transformer fault diagnosis method based on NNTR-SMOTE and GA-XGBoost[J]. Integrated Intelligent Energy, 2024, 46(1): 84-93.
doi: 10.3969/j.issn.2097-0706.2024.01.010
|
[24] |
KE G L, MENG Q, FINLEY T, et al. LightGBM: A highly efficient gradient boosting decision tree[C]// International Conference on Neural Information Processing Systems. NeurIPS, 2017 : 3146-3154.
|
[25] |
丁建立, 孙玥. 基于LightGBM的航班延误多分类预测[J]. 南京航空航天大学学报, 2021, 53(6): 847-854.
|
|
DING Jianli, SUN Yue. Multi-classification prediction of flight delay based on LightGBM[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(6): 847-854.
|
[26] |
蒋其容, 魏勇, 高先松, 等. LSTM-LightGBM组合模型的短期电力负荷预测[J]. 中国设备工程, 2023(8): 78-81.
|
|
JIANG Qirong, WEI Yong, GAO Xiansong, et al. Short-term power load forecasting based on LSTM-LightGBM combined model[J]. China Plant Engineering, 2023(8): 78-81.
|
[27] |
SCHOFIELD J R, TINDEMANS S, CARMICHAEL R, et al. Low Carbon London project: Data from the dynamic time-of-use electricity pricing trial,2013[EB/OL].(2015-11-01)[2024-05-01].http://doi.org/10.5255/ UKDA-SN-7857-1.
|