[1] |
TUNCAR A E, SAĞLAM Ş, ORAL B. A review of short-term wind power generation forecasting methods in recent technological trends[J]. Energy Reports, 2024,12:197-209.
|
[2] |
LI Y T, WANG P, WU Z Y, et al. Collaborative monitoring of wind turbine performance based on probabilistic power curve comparison[J]. Renewable Energy, 2024, 231:120919.
|
[3] |
RODRÍGUEZ-LÓPEZ M Á, CERDÁ E, RIO P D. Modeling wind-turbine power curves: Effects of environmental temperature on wind energy generation[J]. Energies, 2020, 13(18):4941.
|
[4] |
张真真. 风电机组功率曲线不达标原因分析及优化措施[J]. 分布式能源, 2021, 6(5): 71-76.
|
|
ZHANG Zhenzhen. Cause analysis and optimization measures for wind turbine substandard power curve[J]. Distributed Energy, 2021, 6(5): 71-76.
|
[5] |
黄哲, 高政南, 杭晨辉, 等. 基于历史运行数据的风电场理论输出功率计算方法分析[J]. 内蒙古电力技术, 2016, 34(6): 1-6.
|
|
HUANG Zhe, GAO Zhengnan, HANG Chenhui, et al. Calculation method analysis of theoretical output power of wind farm based on historical running data[J]. Inner Mongolia Electric Power, 2016, 34(6): 1-6.
|
[6] |
LIN Q C, CAI H L, LIU H W, et al. A novel ultra-short-term wind power prediction model jointly driven by multiple algorithm optimization and adaptive selection[J]. Energy, 2024, 288:129724.
|
[7] |
殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7): 12-20.
doi: 10.3969/j.issn.2097-0706.2024.07.002
|
|
YIN Linfei, MENG Yujie. Short-term wind power forecasting based on DenseNet convolutional neural networks[J]. Integrated Intelligent Energy, 2024, 46(7): 12-20.
doi: 10.3969/j.issn.2097-0706.2024.07.002
|
[8] |
殷林飞, 仝博文, 李雯吉. 基于多尺度卷积-残差网络的短期风电预测[J/OL]. 综合智慧能源,1-10(2024-09-05)[2024-12-01]. http://kns.cnki.net/kcms/detail/41.1461.TK.20240904.1013.002.html.
|
|
YIN Linfei, TONG Bowen, LI Wenji. Multiscale convolution-residual network for short-term wind power forecasting[J/OL]. Integrated Intelligent Energy,1-10(2024-09-05)[2024-12-01]. http://kns.cnki.net/kcms/detail/41.1461.TK.20240904.1013.002.html.
|
[9] |
LYDIA M, KUMAR S S, SELVAKUMAR A I, et al. A comprehensive review on wind turbine power curve modeling techniques[J]. Renewable and Sustainable Energy Reviews, 2014, 30:452-460.
|
[10] |
沈小军, 付雪姣. 基于改进光滑样条的风电机组功率曲线建模方法[J]. 高电压技术, 2020, 46(7): 2418-2424.
|
|
SHEN Xiaojun, FU Xuejiao. Modeling of wind turbine power curve based on improved smoothing spline[J]. High Voltage Engineering, 2020, 46(7): 2418-2424.
|
[11] |
WANG Y, HU Q H, SRINIVASAN D, et al. Wind power curve modeling and wind power forecasting with inconsistent data[J]. IEEE Transactions on Sustainable Energy, 2019, 10(1):16-25.
|
[12] |
ÜSTÜNTAŞ T, ŞAHIN A D. Wind turbine power curve estimation based on cluster center fuzzy logic modeling[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(5):611-620.
|
[13] |
LÁZARO R, YÜRÜŞEN N Y, MELERO J J. Wind turbine power curve modelling using gaussian mixture copula, ANN regressive and BANN[J]. Journal of physics. Conference Series, 2022, 2265(3):32083.
|
[14] |
KOUISSI M, EN-NAIMI E M, ZOUHAIR A. Hybrid approach for wind turbines power curve modeling founded on multi-agent system and two machine learning algorithms, k-means method and the k-nearest neighbors, in the retrieve phase of the dynamic case based reasoning[J]. International Journal of online and Biomedical Engineering, 2022, 18(6):110-122.
|
[15] |
CAPELLETTI M, RAIMONDO D M, DE NICOLAO G. Wind power curve modeling: A probabilistic Beta regression approach[J]. Renewable Energy, 2024, 223:119970.
|
[16] |
VIRGOLINO G C M, MATTOS C L C, MAGALHÃES J A F, et al. Gaussian processes with logistic mean function for modeling wind turbine power curves[J]. Renewable Energy, 2020, 162:458-465.
|
[17] |
WANG Y, DUAN X, SONG D, et al. Wind power curve modeling with large-scale generalized kernel-based regression model[J]. IEEE Transactions on Sustainable Energy, 2023, 14(4):2121-2132.
|
[18] |
YANG L X, WANG L, ZHANG Z J. Generative wind power curve modeling via machine vision: A deep convolutional network method with data-synthesis-informed-training[J]. IEEE Transactions on Power Systems, 2023, 38(2):1111-1124.
|
[19] |
ZHA W T, JIN Y, SUN Y L, et al. A wind speed vector-wind power curve modeling method based on data denoising algorithm and the improved Transformer[J]. Electric Power Systems Research, 2023, 214:108838.
|
[20] |
PRAANJAL N, AHMED E A. Yaw-adjusted wind power curve modeling: A local regression approach[J]. Renewable Energy, 2023, 202:1368-1376.
|
[21] |
ZHENG Z, YANG L X, ZHANG Z J. Conditional variational autoencoder informed probabilistic wind power curve modeling[J]. IEEE Transactions on Sustainable Energy, 2023, 14(4):2445-2460.
|
[22] |
WEI D X, WANG J Z, LI Z W, et al. Wind power curve modeling with hybrid copula and grey wolf optimization[J]. IEEE Transactions on Sustainable Energy, 2022, 13(1):265-276.
|
[23] |
LIU T H, LYU K Y, CHEN F J, et al. Wind power curve model combining smoothed spline with first-order moments and density-adjusted wind speed strategy[J]. Energy, 2024,313:133628.
|
[24] |
郭军红, 王小萱, 汪月新, 等. Copula分位数回归方法在风电超短期出力预测上的应用[J]. 工程科学学报, 2024, 46(10): 1921-1929.
|
|
GUO Junhong, WANG Xiaoxuan, WANG Yuexin, et al. Enhancing ultra-short-term wind power forecasting using the Copula quantile regression method[J]. Chinese Journal of Engineering, 2024, 46(10): 1921-1929.
|
[25] |
MUSHTAQ K, WARIS A, ZOU R, et al. A comprehensive approach to wind turbine power curve modeling: Addressing outliers and enhancing accuracy[J]. Energy, 2024, 304:131981.
|
[26] |
PICARD A, DAVIS R S, GLÄSER M, et al. Revised formula for the density of moist air (CIPM—2007)[J]. Metrologia, 2008, 45(2):149-155.
|
[27] |
PENG C, WANG J, WU D. Impacts of air density fluctuations toward the mass measurements of a 1 kg silicon sphere[J]. IEEE Access, 2020, 8:140840-140847.
|