综合智慧能源 ›› 2025, Vol. 47 ›› Issue (4): 98-106.doi: 10.3969/j.issn.2097-0706.2025.04.008

• 新能源与储能系统优化 • 上一篇    

基于NSMFO-BERT算法的电力系统多目标优化经济调度研究

曾浩政(), 殷林飞*()   

  1. 广西大学 电气工程学院,南宁 530004
  • 收稿日期:2024-12-02 修回日期:2025-01-02 出版日期:2025-04-25
  • 通讯作者: *殷林飞(1990),男,副教授,博士生导师,博士,从事电力系统运行与分析、人工智能在电力系统的应用等方面的研究,yinlinfei@gxu.edu.cn
  • 作者简介:曾浩政(2000),男,硕士生,从事电力系统优化调度、人工智能在电力系统的应用等方面的研究,2312392004@st.gxu.edu.cn
  • 基金资助:
    国家自然科学基金项目(62463001)

Research on multi-objective optimal economic dispatch of power systems based on NSMFO-BERT algorithm

ZENG Haozheng(), YIN Linfei*()   

  1. School of Electrical Engineering, Guangxi University, Nanning 530004, China
  • Received:2024-12-02 Revised:2025-01-02 Published:2025-04-25
  • Supported by:
    National Natural Science Foundation of China(62463001)

摘要:

随着大量可再生能源并网,传统电力系统模型已难以满足现代电力系统的复杂需求。为适应多种能源类型协同发电的趋势,构建了一种以火力发电为主、可再生能源为辅的新型电力系统模型。由于新型电力系统的发电成本和碳排放量目标面临着多目标权衡的挑战,需要一种智能优化方法动态调整各发电单元的输出,并充分利用各类能源的优势。因此,提出了一种非支配飞蛾扑火优化-双向编码器表示转换器优化算法(NSMFO-BERT)。BERT作为一种大模型,擅长处理复杂的数据关系,通过学习NSMFO优化得到的发电机组有功功率与负荷预测之间的关系,并快速生成大量发电机组的调度策略。仿真结果表明,与NSMFO、多目标灰狼算法和多目标蚁狮算法相比,NSMFO-BERT能够找到发电成本和碳排放量目标值更低的帕累托曲线,且其计算速度分别比上述其他算法快69.3%,61.4%和90.9%,具有较强的泛化能力,适用于处理大规模的电力系统调度问题。

关键词: 双向编码器表示转换器, 非支配飞蛾扑火优化算法, 大模型, 新型电力系统, 发电成本, 碳排放量

Abstract:

With the increasing integration of renewable energy, traditional power system models can no longer meet the complex demands of modern power systems. To adapt to the trend of multi-energy collaborative power generation, a new-type power system model was developed, primarily based on thermal power generation with renewable energy as supplementary sources. Due to the multi-objective trade-offs between power generation costs and carbon emission targets in the new-type power system, an intelligent optimization method was required to dynamically adjust the output of each generating unit and fully leverage the advantages of various energy sources. Therefore, a non-dominated sorting moth-flame optimization algorithm based on bidirectional encoder representations from transformers (NSMFO-BERT) was proposed. As a large model, BERT excelled in handling complex data relationships. By learning from NSMFO, it established the relationship between the active power of generating units and load forecasting, rapidly developing scheduling strategies for a large number of generating units. Simulation results showed that compared to NSMFO, the multi-objective grey wolf algorithm, and the multi-objective ant lion algorithm, NSMFO-BERT could find a Pareto curve with lower target values for power generation costs and carbon emissions. Furthermore, the computation speed of the proposed algorithm was 69.3%, 61.4%, and 90.9% faster than the aforementioned algorithms, respectively. It demonstrated strong generalization ability, suitable for addressing large-scale power system scheduling problems.

Key words: bidirectional encoder representations from transformers, non-dominated sorting moth-flame optimization algorithm, large model, new-type power system, power generation cost, carbon emissions

中图分类号: