综合智慧能源 ›› 2025, Vol. 47 ›› Issue (5): 84-90.doi: 10.3969/j.issn.2097-0706.2025.05.009

• 市场主体决策优化 • 上一篇    

基于粒子群算法的新能源消纳策略在电力交易市场的优化

张忠明1(), 易炳星1, 赵海岭1, 赵晓晔1, 李长峰1, 孙江2, 赵麒贺3,*()   

  1. 1.新疆电力交易中心有限公司,乌鲁木齐 830063
    2.青岛方天科技股份有限公司,山东 青岛 266000
    3.山东科技大学 储能技术学院,山东 青岛 266590
  • 收稿日期:2024-11-18 修回日期:2025-04-03 出版日期:2025-05-25
  • 通讯作者: *赵麒贺(2000),男,硕士生,从事电力市场交易策略优化、储能系统优化等方面的研究,zhaoqihe1@outlook.com
  • 作者简介:张忠明(1973),男,高级工程师,硕士,从事电力市场管理、电力交易信息系统等方面的研究,284773834@qq.com

Optimization of renewable energy consumption strategies in electricity trading market based on particle swarm optimization algorithm

ZHANG Zhongming1(), YI Bingxing1, ZHAO Hailing1, ZHAO Xiaoye1, LI Changfeng1, SUN Jiang2, ZHAO Qihe3,*()   

  1. 1. Xinjiang Power Trading Center Company Limited,Urumqi 830063,China
    2. Qingdao Fangtian Technology Company Limited,Qingdao 266000,China
    3. College of Energy Storage Technology, Shandong University of Science and Technology,Qingdao 266590,China
  • Received:2024-11-18 Revised:2025-04-03 Published:2025-05-25

摘要:

在电力交易市场环境下,优化新能源消纳策略是提升新能源利用效率的重要课题。以光伏发电和火力发电的综合调度为研究对象,构建了电力交易系统模型,并基于粒子群优化算法(PSO)对调度策略进行优化。通过模拟光伏发电数据和电力负荷数据集,设定了目标函数和约束条件,分析了优化策略的实际效果。结果表明,合理的火力发电和光伏发电协调调度不仅能显著提高新能源发电的消纳效率,还提升了电力系统的稳定性和经济性,并验证了PSO在优化新能源消纳策略中的有效性,为电力市场改革和新能源利用提供了理论依据与实践指导。

关键词: 粒子群优化算法, 新能源消纳, 电力市场, 交易策略, 现货交易

Abstract:

In the context of the electricity trading market, optimizing renewable energy consumption strategies is an important approach for improving the efficiency of renewable energy utilization. The integrated scheduling of photovoltaic (PV) and thermal power generation was taken as the research subject. An electricity trading system model was established, and the scheduling strategy was optimized using the particle swarm optimization(PSO)algorithm. Through simulation of PV power generation data and electrical load datasets, the objective functions and constraints were set, and the practical effects of the optimized strategy were analyzed. The results showed that reasonable coordinated scheduling of PV and thermal power generation not only significantly improved consumption efficiency of renewable energy generation but also enhanced the stability and economic efficiency of the power system. The effectiveness of the PSO algorithm in optimizing renewable energy consumption strategies was validated. It provides a theoretical basis and practical guidance for electricity market reform and renewable energy utilization.

Key words: particle swarm optimization algorithm, renewable energy consumption, electricity market, trading strategy, spot trading

中图分类号: