综合智慧能源 ›› 2025, Vol. 47 ›› Issue (6): 1-10.doi: 10.3969/j.issn.2097-0706.2025.06.001

• 综合能源系统优化控制 •    下一篇

基于多尺度卷积-残差网络的短期风电预测

殷林飞(), 仝博文(), 李雯吉()   

  1. 广西大学 广西电力系统最优化与节能技术重点实验室,南宁 530004
  • 收稿日期:2024-07-29 修回日期:2024-08-09 出版日期:2025-06-25
  • 作者简介:殷林飞(1990),男,副教授,博士,从事电力系统运行与分析、人工智能在电力系统中的应用等方面的研究,yinlinfei@gxu.edu.cn
    仝博文(2004),男,从事电力系统运行与分析、人工智能在电力系统中的应用等方面的研究,2202010841@st.gxu.edu.cn
    李雯吉(2004),女,从事电力系统运行与分析、人工智能在电力系统中的应用等方面的研究,liwenji0302@163.com
  • 基金资助:
    国家自然科学基金项目(52107081);广西自然科学基金项目(AA22068071)

Multiscale convolution-residual network for short-term wind power forecasting

YIN Linfei(), TONG Bowen(), LI Wenji()   

  1. Guangxi Key Laboratory of Power System Optimization and Energy Technology,Guangxi University,Nanning 530004,China
  • Received:2024-07-29 Revised:2024-08-09 Published:2025-06-25
  • Supported by:
    National Natural Science Foundation of China(52107081);Guangxi Natural Science Foundation(AA22068071)

摘要:

短期风电预测可为电力系统调度提供依据,防止风电波动对电力系统产生冲击。为解决现有用于短期风电预测的深度学习模型预测精度低的问题,考虑优化模型结构,提出基于多尺度卷积-残差网络的短期风电预测方法。所提出的多尺度卷积-残差网络具有特征提取尺度全面和稳定性强的特点。多尺度卷积部分并行使用了卷积核大小分别为3×3,5×5,7×7和9×9的卷积层,同时提取输入数据的局部细节和全局信息,残差部分引入跳跃连接,解决了卷积神经网络中梯度消失的问题。使用纳塔尔378 d数据集仿真结果表明,所提出方法能够实现对未来24 h的风力发电功率的准确预测。比DarkNet19,InceptionResNetV2,InceptionV3,ResNet18,ResNet50,ShuffleNet和Xception这7种对比算法的均方误差小43.55%以上。

关键词: 多尺度卷积, 残差, 深度学习, 优化模型结构, 短期风电预测

Abstract:

Short-term wind power forecast can provide a basis for power system scheduling and prevent power systems from severe impacts of wind power fluctuations. To improve the low prediction accuracy of existing deep learning models applied for short-term wind power prediction,a short-term wind power prediction method based on multiscale convolution-residual network is proposed to optimize the models. The proposed multiscale convolution-residual network is characterized by full range of feature extraction scales and strong stability,and the multiscale convolution part taking layers with convolutional kernel sizes of 3×3,5×5,7×7 and 9×9 is used to extracted detailed information and global information from the input data. By introducing hopping connections to the residual block,the vanishing gradient problem in the convolutional neural network is solved. The results of the simulation applying on the Natal 378-day dataset show that,the multiscale convolution-residual network can make an accurate prediction on wind power for the next 24 h,and the mean square error of the proposed network is more than 43.55% smaller than that of DarkNet19,InceptionResNetV2,InceptionV3,ResNet18,ResNet50,ShuffleNet and Xception.

Key words: multiscale convolution, residual, deep learning, model optimization, short-term wind power forecast

中图分类号: