综合智慧能源 ›› 2025, Vol. 47 ›› Issue (6): 1-10.doi: 10.3969/j.issn.2097-0706.2025.06.001
• 综合能源系统优化控制 • 下一篇
收稿日期:
2024-07-29
修回日期:
2024-08-09
出版日期:
2025-06-25
作者简介:
殷林飞(1990),男,副教授,博士,从事电力系统运行与分析、人工智能在电力系统中的应用等方面的研究,yinlinfei@gxu.edu.cn;基金资助:
YIN Linfei(), TONG Bowen(
), LI Wenji(
)
Received:
2024-07-29
Revised:
2024-08-09
Published:
2025-06-25
Supported by:
摘要:
短期风电预测可为电力系统调度提供依据,防止风电波动对电力系统产生冲击。为解决现有用于短期风电预测的深度学习模型预测精度低的问题,考虑优化模型结构,提出基于多尺度卷积-残差网络的短期风电预测方法。所提出的多尺度卷积-残差网络具有特征提取尺度全面和稳定性强的特点。多尺度卷积部分并行使用了卷积核大小分别为3×3,5×5,7×7和9×9的卷积层,同时提取输入数据的局部细节和全局信息,残差部分引入跳跃连接,解决了卷积神经网络中梯度消失的问题。使用纳塔尔378 d数据集仿真结果表明,所提出方法能够实现对未来24 h的风力发电功率的准确预测。比DarkNet19,InceptionResNetV2,InceptionV3,ResNet18,ResNet50,ShuffleNet和Xception这7种对比算法的均方误差小43.55%以上。
中图分类号:
殷林飞, 仝博文, 李雯吉. 基于多尺度卷积-残差网络的短期风电预测[J]. 综合智慧能源, 2025, 47(6): 1-10.
YIN Linfei, TONG Bowen, LI Wenji. Multiscale convolution-residual network for short-term wind power forecasting[J]. Integrated Intelligent Energy, 2025, 47(6): 1-10.
[1] | 江善和, 李伟, 徐小艳, 等. 基于变分模态分解改进生成对抗网络的短期风电功率预测[J]. 综合智慧能源, 2024, 46(2): 28-35. |
JIANG Shanhe, LI Wei, XU Xiaoyan, et al. Short-term wind power forecasting based on variational mode decomposition and generative adversarial networks[J]. Integrated Intelligent Energy, 2024, 46(2): 28-35. | |
[2] | 郑真, 朱峰, 马小丽, 等. 基于TL-LSTM的新能源功率短期预测[J]. 综合智慧能源, 2023, 45(1): 41-48. |
ZHENG Zhen, ZHU Feng, MA Xiaoli, et al. Short-term new energy power prediction based on TL-LSTM[J]. Integrated Intelligent Energy, 2023, 45(1): 41-48. | |
[3] | 吴肃霜, 蔡小路, 李俊贤. 风电功率预测方法与最新技术发展研究[J]. 水电与新能源, 2024, 38(3):38-41,45. |
WU Sushuang, CAI Xiaolu, LI Junxian. On the wind power prediction methods and the latest technological development[J]. Hydropower and New Energy, 2024, 38(3):38-41,45. | |
[4] | 胡宇晗, 朱利鹏, 李佳勇, 等. 融合深度误差反馈学习和注意力机制的短期风电功率预测[J]. 电力系统保护与控制, 2024, 52(4): 100-108. |
HU Yuhan, ZHU Lipeng, LI Jiayong, et al. Short-term wind power forecasting with the integration of a deep error feedback learning and attention mechanism[J]. Power System Protection and Control, 2024, 52(4): 100-108. | |
[5] | 殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7):12-20. |
YIN Linfei, MENG Yujie. Short-term wind power forecasting based on DenseNet convolutional neural networks[J]. Integrated Intelligent Energy, 2024, 46(7):12-20. | |
[6] | CHEN H. A novel wind model downscaling with statistical regression and forecast for the cleaner energy[J]. Journal of Cleaner Production, 2024, 434: 140217. |
[7] | 赵增保. 北方不同下垫面风电功率预测方法研究[D]. 兰州: 兰州大学, 2014. |
ZHAO Zengbao. Research on forecast of wind power on different underlying surface in north China[D]. Lanzhou: Lanzhou University, 2014. | |
[8] | 彭曙蓉, 彭家宜, 杨云皓, 等. 基于时变深度前馈神经网络的风电功率概率密度预测[J]. 电力科学与技术学报, 2023, 38(3): 84-93. |
PENG Shurong, PENG Jiayi, YANG Yunhao, et al. Wind power probability density prediction based on time-variant deep feed-forward neural network[J]. Journal of Electric Power Science and Technology, 2023, 38(3): 84-93. | |
[9] | 杨宏伟. 面向风电功率预测的微尺度天气预报卷积神经网络方法研究[D]. 北京: 华北电力大学, 2022. |
YANG Hongwei. Research on microscale weather prediction method of wind power prediction based on convolutional neural network[D]. Beijing: North China Electric Power University, 2022. | |
[10] | 向勇, 王一军, 孔寅恪. 基于深度循环神经网络的大规模风力发电功率预测[J]. 资源信息与工程, 2021, 36(2): 136-139. |
XIANG Yong, WANG Yijun, KONG Yinke. Large-scale wind power prediction based on deep-cycle neural network[J]. Resource Information and Engineering, 2021, 36(2): 136-139. | |
[11] | 黄泽, 毕贵红, 谢旭, 等. 基于MBI-PBI-ResNet的超短期光伏功率预测[J]. 电力系统保护与控制, 2024, 52 (2): 165-176. |
HUANG Ze, BI Guihong, XIE Xu, et al. Ultra-short-term PV power prediction based on MBI-PBI-ResNet[J]. Power System Protection and Control, 2024, 52(2): 165-176. | |
[12] | 朱奇先, 梁浩鹏, 赵小强, 等. 基于残差神经网络的滚动轴承故障诊断方法[J]. 兰州理工大学学报, 2022, 48(3): 86-93. |
ZHU Qixian, LIANG Haopeng, ZHAO Xiaoqiang, et al. Rolling bearing fault diagnosis method based on residual neural network[J]. Journal of Lanzhou University of Technology, 2022, 48(3): 86-93. | |
[13] | 张涛, 任伟, 魏刚, 等. 基于CNN和LSTM的风机轴承剩余寿命预测方法研究[J]. 电气技术与经济, 2023(9): 26-28. |
ZHANG Tao, REN Wei, WEI Gang, et al. Research on residual life prediction method of wind turbine bearing based on CNN and LSTM[J]. Electrical Equipment and Economy, 2023(9): 26-28. | |
[14] | 于建均, 刘耕源, 于乃功, 等. 轻量化改进XYZNet的RGB-D特征提取网络[J]. 计算机应用研究, 2024, 41(2):616-622. |
YU Jianjun, LIU Gengyuan, YU Naigong. RGB-D feature extraction network based on lightweight improved XYZNet[J]. Application Research of Computers, 2024, 41(2): 616-622. | |
[15] | 李博文, 刘进锋. 一种基于生成对抗网络的图像去雾算法[J]. 宁夏工程技术, 2024, 23(2):185-192. |
LI Bowen, LIU Jinfeng. An image dehazing algorithm based on generative adversarial networks[J]. Ningxia Engineering Technology, 2024, 23(2): 185-192. | |
[16] | 江达伟, 董阳阳, 张立东, 等. 基于深度学习的空中目标威胁评估技术研究[J/OL]. 系统仿真学报,1-12(2024-04-10)[2024-07-02].https://doi.org/10.16182/j.issn1004731x.joss.23-1323. |
JIANG Dawei, DONG Yangyang, ZHANG Lidong, et al. Research on air target threat assessment technology based on deep learning[J/OL]. Journal of System Simulation,1-12(2024-04-10)[2024-07-02].https://doi.org/10.16182/j.issn1004731x.joss.23-1323. | |
[17] | 刘赟. ReLU激活函数下卷积神经网络的不同类型噪声增益研究[D]. 南京: 南京邮电大学, 2023. |
LIU Yun. Study on different types of noise benefit of convolutional neural networks under ReLU activation function[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2023. | |
[18] | 康钦豪. 基于深度学习的瓦楞纸实时盘点检测算法研究[D]. 重庆: 重庆理工大学, 2024. |
KANG Qinhao. Research on real time inventory detection algorithm for corrugated paper based on deep learning[D]. Chongqing: Chongqing University of Technology, 2024. | |
[19] | 施保华, 井任月, 杨超, 等. 用于变电站保护压板状态识别的增强YOLO网络[J]. 电力系统保护与控制, 2021, 49(23): 163-170. |
SHI Baohua, JING Renyue, YANG Chao, et al. Enhanced YOLO network for status recognition of a substation protection plate[J]. Power System Protection and Control, 2021, 49(23): 163-170. | |
[20] | 刘建伟, 赵会丹, 罗雄麟, 等. 深度学习批归一化及其相关算法研究进展[J]. 自动化学报, 2020, 46(6): 1090-1120. |
LIU Jianwei, ZHAO Huidan, LUO Xionglin, et al. Research progress on batch normalization of deep learning and its related algorithms[J]. Acta Automatica Sinica, 2020, 46(6): 1090-1120. | |
[21] | 贺婷, 周宁, 吴啸宇. 基于深度全连接神经网络的储层有效砂体厚度预测[J]. 吉林大学学报(地球科学版), 2023, 53(4): 1262-1274. |
HE Ting, ZHOU Ning, WU Xiaoyu. Thickness prediction of reservoir effective sand body by deep fully connected neural network[J]. Journal of Jilin University(Earth Science Edition), 2023, 53(4): 1262-1274. | |
[22] | SILVA D P E, SALLES J L F, FARDIN J F, et al. Measured and forecasted weather and power dataset for management of an island and grid-connected microgrid[J]. Data in Brief, 2021, 39: 107513. |
[23] | 李玉龙, 童舟波, 陈玉莹. 基于Stacking预测模型的变桨功率优化策略研究[J]. 水电与新能源, 2024, 38(7):15-20. |
LI Yulong, TONG Zhoubo, CHEN Yuying. On the pitch power optimization strategy for wind turbine units based on Stacking prediction model[J]. Hydropower and New Energy, 2024, 38(7):15-20. | |
[24] | 刘凯龙. 面向风电机组技术改进效果评价的风电功率回归预测[D]. 北京: 北京交通大学, 2023. |
LIU Kailong. Wind power regression prediction for evaluating the effect of technological improvements on wind turbines[D]. Beijing: Beijing Jiaotong University, 2023. | |
[25] | 赵小平, 韩涛, 李永增, 等. 配电网单相接地故障行波滤波方法研究[J]. 智慧电力, 2018, 46(2): 45-53. |
ZHAO Xiaoping, HAN Tao, LI Yongzeng, et al. Filtering of traveling wave with single phase to ground fault in distribution networks[J]. Smart Power, 2018, 46(2): 45-53. | |
[26] | SILVA D P E, SALLES J L F, FARDIN J F, et al. Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data[J]. Applied Energy, 2020, 278: 115581. |
[1] | 张冬冬, 李芳凝, 刘天皓. 新型电力系统负荷预测关键技术及多元场景应用[J]. 综合智慧能源, 2025, 47(3): 47-61. |
[2] | 杨丽洁, 邓振宇, 陈作双, 黄超, 江美慧, 朱虹谕. 基于MSCNN-BiGRU-MLP模型的公共建筑非侵入式负荷辨识[J]. 综合智慧能源, 2025, 47(3): 23-31. |
[3] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[4] | 冯骥, 杨国华, 史磊, 潘欢, 陆宇翔, 张元曦, 李祯. 基于并行融合深度残差收缩网络的有源配电网故障诊断[J]. 综合智慧能源, 2024, 46(6): 8-15. |
[5] | 王亮, 邓松. 面向新型电力系统的异常数据检测方法[J]. 综合智慧能源, 2024, 46(5): 12-19. |
[6] | 吕永升, 张啸宇, 王榕夕, 郭佩乾. 联邦学习在新型电力系统中的应用与展望[J]. 综合智慧能源, 2024, 46(11): 54-64. |
[7] | 张文强, 李加树, 宣洋, 李辰, 钱杭, 张啸宇. 基于多尺度融合和改进YOLOv8n的光伏缺陷检测方法[J]. 综合智慧能源, 2024, 46(11): 29-37. |
[8] | 李方一, 李楠, 周琰, 谢武. 基于多维数据与深度学习的区域发电碳排放因子预测研究[J]. 综合智慧能源, 2023, 45(8): 11-17. |
[9] | 房瑞, 段志勇, 刘在智, 王宇轩, 刘辰希, 李浩, 范垂钢. 海洋垃圾治理技术综述[J]. 综合智慧能源, 2023, 45(5): 70-79. |
[10] | 林泓宏, 余涛, 张桂源, 张孝顺. 基于数据驱动的高比例新能源配电网无功优化算法[J]. 综合智慧能源, 2023, 45(11): 10-19. |
[11] | 吕政权, 李朝阳, 王海峰, 陈怡君, 彭道刚. 基于GRU-CNN的综合能源网络安全攻击检测方法[J]. 华电技术, 2021, 43(2): 9-14. |
[12] | 肖新帅, 田秀霞, 徐曼. 基于端到端算法的绝缘子检测技术研究[J]. 华电技术, 2021, 43(2): 28-33. |
[13] | 李小斌, 张红娜, 曲凯阳, 李凤臣 . 核能集中供热系统优越性分析[J]. 华电技术, 2020, 42(11): 69-82. |
[14] | 吴立增. 基于相邻风机相关性模型的风速计监测方法[J]. 华电技术, 2016, 38(1): 72-75. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||